Abstract:
A temporary medical lead in which stimulating electrical energy is transmitted to body tissue through the lead electrodes via ionic conduction within the hydrogel material is described. The hydrophilic hydrogel material consists of a porous structure into which conductive salt ions are diffused. In addition the structure of the hydrogel material can be loaded with a single or combination of therapeutic drugs which is elutable from the electrode.
Abstract:
A torque limiting mechanism used for securing fasteners is described. The torque limiting mechanism consists of a shaft, a torque gear having a plurality of ball bearings, a threshold bearing and a variable force applying subassembly. The torque limiting mechanism further consisting of a lock bushing and retaining ring placed circumferentially around the proximal end of the shaft. The lock bushing and retaining ring reduce structural misalignments and increase the accuracy of the device.
Abstract:
A controller for implementing a method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.
Abstract:
The current invention describes a lithium/carbon monofluoride (Li/CFx) cell capable of delivering sufficient power to supply an ICD or similar demanding device. The cell exhibits the typical excellent long-term stability and predictability of the CFx system, as well as its high energy density (greater than about 300 Ah/cc, greater than about 600 Wh/cc). Additionally, the cell is capable of delivering about 0.5 W/cc of cathode volume for greater than 5 seconds with a voltage above 1.70 V (FIG. 1). The following invention embodiments can be applied individually or in conjunction with each other.
Abstract:
A therapy delivery element configured for at least partial insertion in a living body. A braided structure surrounds the conductor assembly. A distal end of the braided structure is attached to an electrode assembly and a free floating proximal end is located near a connector assembly. An outer tubing surrounds the braided structure. The outer tubing includes a proximal end attached to the connector assembly and a distal end attached to the braided structure near the electrode assembly. A proximal tension force applied to the connector assembly acts substantially on the outer tubing and the conductor assembly and a proximal tension force applied to the free floating proximal end acts substantially on the braided structure.
Abstract:
A temporary medical lead in which stimulating electrical energy is transmitted to body tissue through the lead electrodes via ionic conduction within the hydrogel material. The structure of the hydrophilic hydrogel material consists of a porous structure into which conductive salt ions are diffused. In addition the structure of the hydrogel material can be loaded with a single or combination of therapeutic drugs from which is eluted from the electrode's surface.
Abstract:
Terminal pins that include a refractory metal forming a full perimeter weld connected to a terminal block including a dissimilar metal incorporated into feedthrough filter capacitor assemblies are discussed. The feedthrough filter capacitor assemblies are particularly useful for incorporation into implantable medical devices such as cardiac pacemakers, cardioverter defibrillators, and the like, to decouple and shield internal electronic components of the medical device from undesirable electromagnetic interference (EMI) signals.
Abstract:
Methods and apparatus for implanting a neural stimulation lead in a patient's body are described. A lead assembly comprises a pointed-tip stylet, a stimulation lead, and an optional tube to deploy a fixation element attached to the lead. One embodiment of the implant methods starts with inserting the pointed-tip lead assembly directly into tissue. After the desired implant position is determined, the pointed-tip component is separated from the stimulation lead and removed from the tissue, leaving the stimulation lead implanted. After confirmation that the stimulation lead is in the right, tissue location, the pointed-tip component is removed from the body, leaving the stimulation lead in place. The stimulation lead can be connected to a neurostimulator to delivery therapies to treat neural disorders, such as urinary control disorders, fecal control disorders, sexual, dysfunction, and pelvic pain, etc.
Abstract:
An electrical stimulation apparatus including a medical device. The medical device includes: a housing component having at least one electrically conductive area. The medical device includes a plurality of conductors configured to be electrically coupled to a distal electrode array. The electrode array are implantable in a human body. The medical device includes a stimulation circuit positioned inside the housing component. The stimulation circuit includes a plurality of controllable stimulation channels. A first subset of the stimulation channels is electrically coupled to the conductors. A second subset of the stimulation channels is electrically coupled to the electrically conductive area of the housing component. The stimulation circuit is operable to simultaneously create a first stimulation path in the electrode array and a second stimulation path that extends from the electrode array to the housing component.
Abstract:
In various examples, an apparatus includes a needle cannula including a proximal end and a distal end The needle cannula includes a lumen extending from the proximal end to the distal end. A handle is disposed at the proximal end of the needle cannula. An electrocautery receiver is associated with the handle and electrically coupled to the needle cannula, wherein, with an electrocautery device activated and placed within the electrocautery receiver, electrical energy is conducted from the electrocautery device to the distal end of the needle cannula to selectively electrocauterize tissue in contact with the distal end of the needle cannula.