CRYPTIC METABOLITES AND METHOD FOR ACTIVATING SILENT BIOSYNTHETIC GENE CLUSTERS IN DIVERSE MICROORGANISMS

    公开(公告)号:US20210041452A1

    公开(公告)日:2021-02-11

    申请号:US16634388

    申请日:2018-07-30

    摘要: Microorganisms are prolific producers of natural products, a group of molecules that make up the majority of drugs approved by the FDA in the past 35 years. After decades of mining, the low-hanging fruit has been picked and so discovery of drug-like molecules from microorganisms has come to a near-halt. The reason for this lack of productivity is that most biosynthetic pathways that give rise to natural products are not active under typical laboratory growth conditions. These so-called ‘cryptic’ or ‘silent’ pathways are a major source of new bioactive molecules and methods that reliably activate them could have a profound impact on drug discovery. Disclosed herein is a rapid genetics-free method for eliciting and detecting cryptic metabolites using an imaging mass spectrometry-based approach. An organism of choice is challenged with elicitors from a small molecule library. The molecules elicited are then imaged by mass spec, which allows for rapid identification of cryptic metabolites. These are then isolated and characterized. Employing the disclosed approach activated production of cryptic glycopeptides from an actinomycete bacterium. The molecules that result, the keratinimicins and keratinicyclins, are metabolites with important structural features. At least two of these, keratinimicins B and C, are highly bioactive against several pathogenic strains. This approach will allow for rapid activation and identification of cryptic metabolites from diverse microorganisms in the future.

    System and method for transceiver and antenna programmability and generalized MIMO architectures

    公开(公告)号:US10886963B2

    公开(公告)日:2021-01-05

    申请号:US16453461

    申请日:2019-06-26

    摘要: Embodiments generally disclosed herein relate to a sub-wavelength multi-port codesign approach between the unit transceiver element and the integrated EM interface to enable a generalized broadband MIMO array with individually programmable element patterns. The co-design approach allows processing of radiated signals at the antenna level distinct from classical arrays. The transmitter and receiver architectures with the integrated EM interface are implemented in 65-nm CMOS and have a bandwidth of 37-73 GHz. Wireless links with data rates up to 12 Gb/s are demonstrated across the spectrum with a wide range of reconfigurability of the active EM interface. The multifunctional EM interface and the broadband transceivers can enable future efficient and compact MIMO arrays for reliable links exploiting frequency, spatial, pattern and polarization diversities.

    Barrier film for electronic devices and substrates

    公开(公告)号:US10862073B2

    公开(公告)日:2020-12-08

    申请号:US14018449

    申请日:2013-09-05

    IPC分类号: H01L51/56 H01L51/52 H01L51/00

    摘要: Methods for forming a coating over a surface are disclosed. A method includes directing a first source of barrier film material toward a substrate in a first direction at an angle θ relative to the substrate, wherein θ is greater than about 0° and less than about 85°. Additionally, a method of depositing a barrier film over a substrate includes directing a plurality of N sources of barrier film material toward a substrate, each source being directed at an angle θN relative to the substrate, wherein for each θN, θ is greater than about 0° and less than about 180°. For at least a first of the θN, θN is greater than about 0° and less than about 85°, and for at least a second of the θN, θN is greater than about 95° and less than about 180°.