Abstract:
A method producing a surfactant from glycerol by converting glycerol, in a first step, to glycidol, polymerizing glycidol to an aliphatic alcohol and finally substituting a hydroxyl group with a substitute anion.
Abstract:
The present invention refers to a process for preparing a compound of general formula (A), as reported in the description, wherein R is a radical of a drug and R1-R12 are hydrogen or alkyl groups, m, n, o, q, r and s are each independently an integer from 0 to 6, and p is 0 or 1, and X is O, S, SO, SO2, NR13 or PR13 or an aryl, heteroaryl group, said process comprising reacting a compound of formula (B) R—COOZ (B) wherein R is as defined above and Z is hydrogen or a cation selected from: Li+, Na+, K+, Ca++, Mg++, tetralkylammonium, tetralkylphosphonium, with a compound of formula (C), as reported in the description, wherein R1-R12 and m, n, o, p, q, r, s are as defined above and Y is a suitable leaving group.
Abstract:
A process for the preparation of compounds of formula HO-A-ONO2 (I) wherein A is a C2-C6 alkylene chain by nitration of the corresponding alkanediols with “stabilised” nitric acid is herein disclosed. The process is safer to operators and allows to obtain advantageous yields on an industrial scale.
Abstract:
A catalyst includes a cyclic imide compound having an N-substituted cyclic imide skeleton represented by following Formula (I): wherein X is an oxygen atom or a hydroxyl group, and having a solubility parameter of less than or equal to 26 [(MPa)1/2] as determined by Fedors method. The catalyst may further comprise a metallic compound. By allowing (A) a compound capable of forming a radical to react with (B) a radical scavenging compound in the presence of the catalyst, an addition or substitution reaction product between the compound (A) and the compound (B) or a derivative thereof can be obtained.