Abstract:
A mooring loop is provided for use with connecting a mooring line to a bollard. The mooring loop may stretch and function as a time delay fuse when excessive loads are applied to the mooring line. The mooring loop is comprised of a reactive fiber component in the shape of a continuous loop that includes a plurality of at least one of: an undrawn hydrophobic polymer fiber or a substantially undrawn hydrophobic polymer fiber. At least two jackets are in surrounding relation to portions of the reactive fiber component. The at least two jackets include respective end portions which overlap. As the mooring loop stretches, a visual indicator on an end portion of one of the jackets pulls out of and away from the end portion of the other one of the jackets. The visual indicator serves as a warning that excessive loads are being applied to the mooring line.
Abstract:
There is provided a high-tensile synthetic fiber rope having a low percentage elongation, the rope dramatically improving the strength utilization rate of the tensile strength of the synthetic fibers, and ensuring the percentage elongation approximately the same as the percentage elongation of the synthetic fibers used in the rope. The synthetic fiber rope includes a plurality of strands twisted or braided together, each of the strands including: a tubular woven fabric woven with warp and weft yarns made of synthetic fibers; and a core material disposed in the tubular woven fabric, the core material being constituted by a plurality of parallel-bundled yarns made of the synthetic fibers in the tubular woven fabric.
Abstract:
The present invention relates to a core-sheath rope (1), comprising a textile core (2) with one or several stationary threads (21-28) extending in the longitudinal direction of the rope, an outer sheath (3) provided in the form of a hollow braid, and an inner sheath (4) provided in the form of a hollow braid and surrounding the core (2). The rope according to the invention is characterized in that at least part of the stationary threads of the core (21-26) are braided individually into the hollow braid (41, 42) of the inner sheath (4).
Abstract:
A composite cable or rope is described. The cable or rope has an inner metallic rope or core, consisting of a plurality of metal strands and a plurality of covering layers formed around the inner metallic core. An innovative anchoring and safety system is also described. The system has one or more anchorages, fixed to the roof, in each of which the rope is stably locked by screwing, so as not to create instability problems for people attached to the rope.
Abstract:
The present invention relates to a core-sheath rope (1), comprising an outer sheath (3) provided in the form of a hollow braid and an inner sheath (4) provided in the form of a hollow braid, wherein thread changes between threads (41, 42) of the inner sheath (4) and threads (31, 32) of the outer sheath (3) and/or enlacements between threads (41, 42) of the inner sheath (4) and threads (31, 32) of the outer sheath (3) are provided in certain places (5, 6). The rope according to the invention is characterized in that bridge threads (51, 61) extending in the longitudinal direction of the rope are provided in the places of the thread changes and/or enlacements, with the threads of the outer sheath and the inner sheath, respectively, which change from the inside to the outside and from the outside to the inside, respectively, being guided around those bridge threads.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic pillion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
A self-wrapping, textile sleeve for routing and protecting elongate members from exposure to abrasion, thermal and other environmental conditions and method on construction thereof. The sleeve has an elongate wall constructed from interlaced yarns having interstices between adjacent yarns. At least one of the yarns is heat formed at one temperature to form the wall as a self-wrapping wall curling about a longitudinal axis of the sleeve. The wall has an inner surface providing a generally tubular cavity in which the elongate members are received. The wall also has an outer surface with a cured layer thereon. The cured layer is cured at the one temperature at which the yarns are heat formed into their self-wrapping configuration, wherein the cured layer fills the interstices between adjunct yarns to form an impervious layer on the wall.
Abstract:
A jacket for a load-bearing, lengthy body, wherein the jacket is comprised of a plurality of braid elements which, when braided, enclose at least a portion of the lengthy body, and wherein the braid element is comprised of a braided ribbon. A method of forming the jacket is also described.
Abstract:
A securing device is provided comprised of a reactive fiber component and at least one of a terminating fiber component and an initiating fiber component. The reactive fiber component includes at least one of the following: an undrawn polymer fiber and a substantially undrawn polymer fiber, wherein the first reactive fiber component is operative to stretch responsive to a load. The terminating fiber component is in a compressed state and is operative to elongate to a length at which the terminating fiber component is operative to prevent further stretching of the first reactive fiber component responsive to the load. The initiating fiber component is operative to break responsive to a predetermined force and permit the first reactive fiber component to stretch responsive to the load.
Abstract:
A method for forming a helix rope for a trawl comprising the steps of: a) situating upon a portion of a rope a bead of a substance being selected from a group consisting of: (i) a liquid substance; and (ii) a semi-liquid substance. A helix rope (35) for forming portions of a pelagic trawl, the helix rope comprising a braided sheath (398) formed of greater than sixteen strands (397), whereby drag is reduced. A method for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchoring lines, oil derrick anchoring lines, seismic lines, paravane lines, and any other uses for rope, cable or chain.