Abstract:
Method for making a custom phase-conjugating diffractive mirror for a laser resonator comprising the steps of: (a) (a) choosing a specified beam mode profile a.sub.i (x,y) that will suit need of said designer, (b) calculating the mode profile b(x',y') which is a value of the specified a.sub.i (x,y) that is propagated to the reflection surface of the diffractive mirror and (c) calculating mirror reflectance t(x',y') which reflects phase conjugate of b(x',y'). A method for fabricating such a mirror is shown. Another aspect of the invention is the addition of a phase adjusting element into a laser resonator, and compensating for the addition of a phase adjusting element in the design of other phase-adjusting elements such as the mirrors.
Abstract:
For high energy density and improved processing performance of a solid-state laser, the product .theta.d of a laser beam with divergence .theta. and beam diameter "d" at the beam waist is reduced. Formation of an non-oscillating region as in an output mirror with a pinhole is prevented by use of a hole-type mirror with a central region having reduced reflectance. For increased range of stable oscillation, a beam expander is interposed between a laser medium and the output mirror. The focused beam of a slab laser is made circular by using a columnar light-guiding path on the output side of the output mirror. A laser beam is more readily admitted into an optical fiber by use of a conical light-guiding path. With a hole-type output mirror, two-component laser output from a slab laser has very small .theta.d values.
Abstract:
Frequency modulated radar transmitters with a repetitive linear increase in frequency with time, referred to as "frequency chirps", are required for many radar applications. The present invention provides a simple way of obtaining such a chirped frequency modulation for a laser radar transmitter or the like. The principle is to translate an optical wedge in the direction of its wedge gradient at constant velocity across the optical path of a laser resonator. The resulting increase or decrease in the effective optical length of the resonator causes frequency chips. In a first embodiment of the present invention, a rotating phase plate on the face of a rotating wheel with the added phase varying linearly with angular position around the wheel is placed within a laser's resonator cavity to tune the optical pathlength of the cavity and thereby the longitudinal mode of the resonator to produce the chirp. This embodiment can be used in either a reflective or a transmissive mode. In a second embodiment of the present invention, the outer peripheral rim of a spiral wheel having a spirally increasing or decreasing radius is used, whereby the rim functions as a mirror, is disposed within the laser resonator. Rotating the wheel changes the optical pathlength of the resonator and causes the longitudinal modes of the resonator to tune so as to generate the required chirp sequence. Lastly, various systems are proposed for eliminating various types of errors in the system as well as for generating both up-chirps and down-chirps sequentially and/or simultaneously.
Abstract:
A laser having a glass enclosure placed in an optical cavity receives a pump beam and generates at least one first-order and one second-order Stokes wave. The construction is such that an optical waveguide placed in the gas enclosure is used to select the first and the second-order Stokes wave.
Abstract:
An optically pulsed laser with an unstable resonator configuration is described with two feedback beams. The laser relies on adjoint mode feedback with a single modulator in the low power feedback beam path. The laser is characterized by a two coupled adjoint feedback beams each configured to pass through the modulator in one direction only, thereby doubling the output power potential of the laser.
Abstract:
In a quasi-optical gyrotron which exhibits a quasi-optical resonator having two mirrors (4a, 4b) which opposite one another on a resonator axis (5), the required electromagnetic radiation is coupled out by means of a hologram. In this arrangement, at least one of the two mirrors (4b) of the resonator exhibits a reflective surface (8b) provided with a hologram. The hologram is constructed in such a manner that the radiation to be coupled out is scattered in the direction of at least exactly one coupling-out axis (10), the at least exactly one coupling-out axis (10) enclosing a predetermined angle .alpha. not equal to zero with the resonator axis (5). The angle .alpha. is preferably as small as possible.
Abstract:
A stable optical laser resonator is formed by two mirrors facing each other. At least one of the mirrors operates as a decoupling device for decoupling a coherent, pulsating laser beam from the resonator. For this purpose the decoupling mirror has a zone or zones which are permeable or partially permeable to the laser beam. These zones are located in predetermined areas of the mirror and the size of these zones is relatively small compared to the total effective mirror surface. Preferably, the active lasing medium is limited to a narrow cross-sectional area perpendicularly to the optical axis of the resonator. The narrow cross-sectional area has an approximately rectangular shape for enforcing the one-dimensional oscillation movement of a laser beam.
Abstract:
There is provided a laser mirror which produces an unusual type of laser output beam with certain desirable properties. For example, diffraction limited laser beams can be produced with large size components. The mirror is reflective, non-transmissive, and includes a plurality of spherical cavities therein.
Abstract:
The surface of a laser mirror is formed with grooves to induce polarization of a laser energy incident therein, the plane of polarization being selective and reproducible. The dimensions and spacing of the grooves are a function of the wavelength of the laser energy.