Abstract:
There is disclosed a thermoplastic resin composition comprising: (A) 5 to 95% by weight of a thermoplastic resin having a melt flow rate of from 0.001 to 100 g/10 min. and a die swell ratio of not less than 1.7, and (B) 95 to 5% by weight of an olefin polymer satisfying the following formula (1), Uanull1.5nullSanull(Ta/100)3.3nullnull(1) wherein (i) Ua is a flexural modulus of a resin opposition for evaluation composed of 50 parts by weight of said olefin polymer and 50 parts by weight of a specific homopolypropylene resin, (ii) Sa is a flexural modulus of said homopolypropylene resin, and (iii) Ta is a containing ratio of said homopolypropylene resin in the resin composition for evaluation, provided that the sum of the component (A) and the component (B) is 100% by weight.
Abstract:
A rubber-reinforced styrene transparent resin composition contains a styrene copolymer reinforced with a rubber polymer, wherein the monomer composition of an acetone soluble resin component contained in the resin composition contains 5 to 70% by weight of aromatic vinyl monomer (a1), 30 to 95% by weight of unsaturated carboxylic acid alkyl ester monomer (a2), 0 to 50% by weight of vinyl cyanide monomer (a3), and 0 to 50% by weight of another monomer copolymerizable with these monomers, and the acid value of the acetone soluble resin component is 0.01 to 1 mgKOH/g.
Abstract:
A polypropylene resin composition comprising: 95 to 50% by weight of a propylene homopolymer (A) having an intrinsic viscosity nullnullnullA of not more than 1.3 dl/g; and 5 to 50% by weight of a propylene-ethylene block copolymer (B) having a propylene homopolymer portion having an intrinsic viscosity nullnullnullBP of from 1.4 to 2.0 dl/g, and a propylene-ethylene random copolymer portion having an intrinsic viscosity nullnullnullBEP of from 4.0 to 15 dl/g, the polypropylene resin composition having a melt flow rate of from 5.0 to 150 g/10 min.
Abstract:
This invention relates to a propylene series resin sheet that has a large tan null and high frequency welding characteristics, excellent transparency, low-temperature impact resistance, and surface durability. The propylene series resin sheet is characterized by a mixture of a polypropylene series composition with a weight percentage of 50-99% and an ethylene series copolymer with a weight percentage of 1-50%.
Abstract:
A method includes providing a starting material having a Young's modulus (202). Second, from a plurality of possible modifiers, a modifier is identified and selected that has a Young's modulus comparable to or greater than that of the starting material and that, when blended with the starting material, creates a blend with a stable morphology (204). Third, the scratch resistance of the starting material is increased by blending the modifier with the starting material to form a blend (206). Alternatively, the scratch resistance of the stating material is maintained while the toughness of the starting material is increased by blending the modifier with the starting material to form a blend.
Abstract:
A polyolefin composition comprising from 10 to 95% by weight of a crystalline propylene polymer, A) having an MFR value equal to or lower than 60 g/10 min., and from 5 to 90% by weight of an ultra high molecular weight polyethylene, B) in form of particles having a mean particle size of from 300 to 10 nullm.
Abstract:
The invention relates to additives for improving the cold flow properties of middle distillates, containing from 10 to 95% by weight of copolymers A), from 5 to 90% by weight of copolymers B) and, if required, from 0 to 70% by weight of copolymers C), which correspond to the following formulae: A) copolymers of lower olefins and vinyl esters, containing A1) from 85 to 97 mol % of bivalent structural units of the formula nullCH2nullCR1R2nullnullnullA1 in which R1 and R2,independently of one another, are hydrogen or methyl, and A2) at least 3 mol % of bivalent structural units of the formula 1 in which R3 is saturated, branched C6nullC16-alkyl which has a tertiary carbon atom, wherein R3 is bonded with its tertiary carbon atom to the carboxyl function, B) copolymers comprising B1) from 40 to 60 mol % of bivalent structural units of the formula 2 where X is O or NnullR4 and in which a and b are 0 or 1 and anullbnull1, and B2) from 60 to 40 mol % of bivalent structural units of the formula nullH2CnullCR11R5nullnullnullB2 and, if required, B3) from 0 to 20 mol % of bivalent structural units which are derived from polyolefins, the polyolefins being derivable from monoolefins having 3 to 5 carbon atoms, and in which a) R4 is an alkyl or alkenyl radical having 10 to 40 carbon atoms or an alkoxyalkyl radical having 1 to 100 alkoxy units and 1 to 30 carbon atoms in the alkyl radical, and b) R5 is a radical of the formula OCOR12 or COOR12, in which R12 is C1nullto C3-alkyl, and c) the number of carbon atoms of the polyolefin molecules on which the structural units B3) are based is from 35 to 350, and d) R11 is hydrogen or methyl, and, if required, C) a further copolymer differing from A) and B) and comprising ethylene and one or more vinyl esters or acrylates, which by itself is effective as a cold flow improver for middle distillates.
Abstract:
A polypropylene resin composition capable of bringing about a non-stretched film superior in the transparency, in the impact resistance, in the low temperature heat-sealability and in the strength of heat-sealing, which composition comprises (A) a polypropylene resin, (B) a specific ethylene/null-olefin random copolymer and (C) a specific propylene/ethylene/1-butene random copolymer.
Abstract:
A propylene polymer composition having a melt flow rate (MFR) value from 3 to 30 g/10 min, comprising (percent by weight): A) 50-90% of one or more propylene copolymer(s) having a content of xylene-insoluble mojety at room temperature of not less than 85%, selected from the group consisting of propylene-ethylene random copolymers containing from 1 to 7%, of ethylene; propylene-C4-C8 null-olefin copolymers containing 2-10% of the C4-C8 alpha-olefins; and propylene-ethylene-C4-C8 a-olefin copolymers containing 0.5-5% of ethylene and 2-6% Of C4-C8 null-olefins; and B) 10-50% of a copolymer of propylene containing from 8 to 40% of ethylene and optionally 1-10% of a C4-C8 alpha-olefin; the said MFR value (MFR (2)) being obtained by subjecting to degradation a precursor composition comprising the same components A) and B) in the above said proportions, but having the MFR value (MER (1)) from 0.1 to 5 g/10 min with a ratio MFR (2) to MFR (1) of from 1.5 to 20.
Abstract:
The use of polytetrafluoroethylene micropowders having a particle size of generally less than about 20 microns as an additive for polyvinyl chloride or polyolefin unexpectedly produces compositions which are melt processable. Other unexpected properties include that the micropowder is deformable under shear and acts as a flame retardant.