Abstract:
Provided is an electron-emitting device with high electron emission efficiency and with stable electron emission characteristics over a long period. The electron-emitting device has a substrate, first and second carbon films laid with a first gap in between on the surface of the substrate, and first and second electrodes electrically connected to the first carbon film and to the second carbon film, respectively. In the electron-emitting device, a narrowest gap portion between the first carbon film and the second carbon film in the first gap is located above a surface of the substrate and the substrate has a depressed portion, at least, in the first gap.
Abstract:
In an electron-emitting device having a pair of electric conductors disposed on a substrate in opposed relationship with each other, and a pair of piled films composed chiefly of carbon and connected to the pair of electric conductors and disposed with a gap interposed therebetween, the piled films contain therein one or more kinds of elements selected from the group of lithium, potassium, sodium, calcium, strontium and barium within the range of 1 mol % to 5 mol % in terms of the percentage to carbon.
Abstract:
An electron-emitting device includes a substrate, first and second carbon films disposed so as to have a first gap between the first and second carbon films on a surface of the substrate, and first and second electrodes electrically connected with the first and the second carbon films respectively, wherein the carbon film has a region showing orientation, and a direction of the orientation is in an approximately parallel direction along the substrate surface. Thereby, it is possible to improve thermal and chemical stability of a carbon film and stabilize good electron emission characteristics over a long period.
Abstract:
A substrate for an electron source to be used for forming the electron source, the electron source and an image forming apparatus in which the substrate has been used, and manufacturing method thereof. The substrate to form the electron source in which an electron emission device is disposed includes a substrate containing Na, a first layer wish SiO2 as a main component having been formed on the substrate, and a second layer containing electron conductive oxide. The electron source includes the substrate and the electron emission device disposed on the first layer or the second layer. The image forming apparatus includes the electron source and an image forming member to form an image with irradiation of electrons emitted from the electron source. According to a manufacturing method of the substrate for forming the electron source with which the electron emission device is formed, the first layer with SiO2 as its main component, and the second layer containing electron conductive oxide are formed on a substrate containing Na. The manufacturing method of an electron source includes a step in which the first layer with SiO2 as its main component, and the second layer containing electron conductive oxide are formed on a substrate containing Na, and a step of forming an electron emission device on the first layer or on the second layer.
Abstract:
A method of manufacturing an electron-emitting device with a stable electrical characteristics without variation per each of the devices is provided, by forming, on a substrate, a cathode electrode, a carbon layer on the cathode electrode, and a gate electrode, disposing an anode electrode, and applying to the carbon layer a voltage higher than that at a driving of the electron-emitting device.
Abstract:
In an electron-emitting device including, between electrodes, an electroconductive film having an electron emitting region, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher melting point than that of a material of the electroconductive film. Alternatively, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher temperature at which the material develops a vapor pressure of 1.3.times.10.sup.-3 Pa, than that of a material of the electroconductive film. A manufacturing method for an electron-emitting device includes a step of forming a film made primarily of a metal in the electron emitting region of the electroconductive film. The electron-emitting device has stable characteristics and improved efficiency of electron emission. An image-forming apparatus comprising the electron-emitting devices has high luminance and excellent stability in operation.
Abstract:
An image forming apparatus, according to the present invention, includes a first substrate whereon are provided a functional element and electric wiring that is connected to the functional element, and a second substrate whereon is an area where an image is to be formed, and wherein, with the first substrate and the second substrate being located opposite to each other, space between the first substrate and the second substrate is kept in a pressure-reduced state so as to form an image in the area on the second substrate, and wherein the electric wiring is formed of a laminated conductive material by a process that plates a printed pattern, which is initially deposited by a printing process.
Abstract:
An electron emission device can be driven with a low voltage and has an excellent mass production capability. A display device, such as a color flat panel or the like, which uses such electron emission devices has an excellent display quality. The electron emission device includes a first electrode, on which a plurality of fine particles of an electron emission body obtained by terminating carbon bodies formed on metal fine particles, serving as nuclei, with a low-work-function material via oxygen are partially arranged, on a first substrate, and a second electrode where a voltage for drawing electrons from the electron emission body into a vacuum is applied. A metal of the metal fine particles is a catalytic metal. The catalytic metal is an iron-family element, such as Ni, Co, Fe or the like, or a platinum-family element, such as Pd, Ir or Pt. The carbon bodies are made of graphite. The low-work-function material is an alkaline metal or an alkaline earth metal.
Abstract:
An electron-emitting device comprises a pair of electrodes and an electroconductive thin film therebetween having an electron-emitting region. The electroconductive thin film is coated with an additional film at the electron-emitting region to provide an additional resistance within a range from 500 .OMEGA. to 100 k.OMEGA..
Abstract:
An electron emitting device includes a pair of device electrodes disposed at locations opposite to each other, a conductive thin film in contact with both the pair of device electrodes, and an electron emitting region formed in a part of the conductive thin film. The conductive thin film is composed of fine particles including a first metal element serving as a main constituent element and at least one second metal element. The second metal element is to precipitate at the surface of the conductive thin film and thus form a low work function material layer. When a voltage is applied between the pair of device electrodes, the second metal element moves from the inside of the conductive thin film to at least a part of the surface of the conductive thin film.