摘要:
A method for removing and modifying a protrusion by using a short pulse laser is provided for modifying a color filter. In a color filter modifying method, a transparent substrate (2) is scanned with a beam in a parallel direction, while irradiating a protrusion (8) generated on the color filters (3-1, 3-2, 3-3) formed on a transparent substrate (2) with a beam collected by a high NA condensing lens (18), and a protrusion (8) is removed or modified.
摘要:
A problem diagnosis method and problem repair method for a laser device are provided. The method includes measuring the intensity of scattered light generated by an optical part inside the laser device; referring to data indicating a temporal change in the scattered light predicted under predetermined operating conditions of the laser device, and predicting the seriousness of the problem from the intensity of scattered light; and determining what kind of maintenance work is necessary based on the seriousness of the problem. Additionally, the seriousness of the problem in the optical part can be predicted by executing fuzzy logic based on membership functions defining the relationship between scattered light intensity and the seriousness of problems of optical parts.
摘要:
The energy conversion efficiency from light that is to be converted to converted light of a wavelength conversion device is adjusted so as always to be kept stably at a maximum. The wavelength conversion device is provided with a laser light source 10 for generating a fundamental wave light, a nonlinear optical crystal 16 into which the fundamental wave light is made to enter to generate converted light, and an optical path adjusting portion 30 for adjusting the direction of propagation of the fundamental wave light and the position of the light beam of the fundamental wave light in order to make the fundamental wave light enter the nonlinear optical crystal 16 while satisfying phase matching conditions. The optical path adjusting portion 30 is constituted so as to be provided with a first reflecting mirror 12 and a second reflecting mirror 14, and the first reflecting mirror is provided with adjustment means driven by motors M1 and M2, and the second reflecting mirror is provided with adjustment means driven by motors M3 and M4. Additionally, the wavelength conversion device is provided with a semi-transparent mirror 18 for splitting off and taking out one portion of output light 17, and a photodetector 22 for detecting this split off output light. An electrical signal 23 that is output from the photodetector 22 is input into an adjustment value calculating means 26, and in this adjustment value calculating means, the necessary adjustment values for the adjustment means in the optical path adjusting portion 30 are calculated using fuzzy inference, and this result is output to an optical path adjusting portion control device 28. The optical path adjusting portion control device 28 carries out adjustment of the optical path based upon output signals 27 from the adjustment value calculating means 26.
摘要:
A femtosecond laser with stabilized output, and a method for stabilizing the output of a femtosecond laser. The femtosecond laser comprises a regenerative amplifier, a photodetector, a control portion and a variable attenuator, wherein the variable attenuator is provided so as to be capable of controlling an output beam of the regenerative amplifier, the photodetector is provided between the regenerative amplifier and the variable attenuator, the photodetector detects an output beam of the regenerative amplifier and transmits the results of the detection to a power controller, and the power controller controls the variable attenuator depending on the a difference between a predetermined target value and the results.
摘要:
A problem diagnosis method and problem repair method for a laser device such as laser treatment devices used in the medical field and laser processing devices used in industrial fields, capable of detecting problems in laser devices early and reducing the time required for maintenance work on the laser devices are provided. The method comprises a step of measuring the intensity of scattered light generated by an optical part inside the laser device; a step of referring to data indicating a temporal change in the scattered light predicted under predetermined operating conditions of the laser device, and predicting the seriousness of the problem from the intensity of scattered light; and a step of determining what kind of maintenance work is necessary based on the seriousness of the problem. Additionally, the seriousness of the problem in the optical part can be predicted by executing fuzzy logic based on membership functions defining the relationship between scattered light intensity and the seriousness of problems of optical parts.
摘要:
The present invention has the object of offering a laser resonator capable of maintaining high amplification efficiency even if the thermal lensing effect occurring in the laser medium varies during operation or over repeated operation and suspension of the laser device. The laser resonator comprises at least a pair of reflection portions (planar reflective mirrors 3) provided such as to allow a laser beam to oscillate therebetween; a laser medium provided on the optical path of the laser between the pair of reflection portions; an excitation portion (excitation laser device 5) for exciting the laser medium; an optical system (convex lens 1) provided on the optical path of the laser beam between the laser medium and the pair of reflection portions for changing the state of the laser in the laser medium; and a movement portion for moving the optical system along the optical axis of the laser.
摘要:
The invention offers a regenerative optical amplifier enabling voltage to be easily applied to polarizing elements such as Pockels cells, without the need for complicated drive circuitry. An input beam of S-polarized light is reflected by a polarizer 1 and advances to a Pockels cell 2. In the time it takes for the input beam, having once passed through the Pockels cell 2, to be reflected by a reflective mirror 3 and return to the Pockels cell 2, a voltage VP1 causing a 90-degree rotation in the polarization of transmitted light is applied to the Pockels cell 2, and this applied voltage VP1 is maintained. The input beam is converted by the Pockels cell 2 into a P-polarized light pulse which is transmitted by the polarizer. Subsequently, the light pulse is converted from P-polarized light to S-polarized light and back to P-polarized light with each roundtrip of the Pockels cell 2, while passing each time between the reflective mirror 3, laser crystal 4 and reflective mirror 7, so as to be amplified in the resonator formed thereby. The amplified light pulse is extracted by applying a voltage VP2 causing a 90-degree rotation of the polarization of the transmitted light to the Pockels cell 6 to convert the light pulse to S-polarized light which is then reflected out of the resonator by the polarizer 5.
摘要:
The present invention offers a coherent light generating device with extremely little Fresnel loss. Additionally, the invention makes anti-reflection coatings on the end surfaces of a wavelength-converting medium unnecessary, while also reducing deterioration of anti-reflection coatings and wavelength-converting medium end surfaces, thereby improving the durability of the device. The invention relates to a coherent light generating device comprising an excitation beam source for generating an excitation beam polarized in a predetermined direction; a wavelength-converting medium having a first end surface and a second end surface, for receiving the excitation beam incident on the first end surface and outputting from the second end surface one or two wavelength-converted beams polarized in the same direction as the predetermined direction; and first and second mirrors provided respectively at the first end surface and the second end surface of the wavelength-converting medium, for reflecting wavelength-converted light emitted from the wavelength-converting medium and causing resonance thereof; wherein the first end surface is oriented so that the excitation beam and the wavelength-converted beam reflected by the first mirror are incident at roughly the Brewster's angle, and the polarization of the excitation beam and the wavelength-converted beam is P-polarized with respect to the first end surface; and the second end surface is oriented so that the wavelength-converted beam reflected by the second mirror is incident at roughly the Brewster's angle, and the polarization of the wavelength-converted beam is P-polairized with respect to the second end surface.
摘要:
The invention offers a regenerative optical amplifier enabling voltage to be easily applied to polarizing elements such as Pockels cells, without the need for complicated drive circuitry. An input beam of S-polarized light is reflected by a polarizer 1 and advances to a Pockels cell 2. In the time it takes for the input beam, having once passed through the Pockels cell 2, to be reflected by a reflective mirror 3 and return to the Pockels cell 2, a voltage VP1 causing a 90-degree rotation in the polarization of transmitted light is applied to the Pockels cell 2, and this applied voltage VP1 is maintained. The input beam is converted by the Pockels cell 2 into a P-polarized light pulse which is transmitted by the polarizer. Subsequently, the light pulse is converted from P-polarized light to S-polarized light and back to P-polarized light with each roundtrip of the Pockels cell 2, while passing each time between the reflective mirror 3, laser crystal 4 and reflective mirror 7, so as to be amplified in the resonator formed thereby. The amplified light pulse is extracted by applying a voltage VP2 causing a 90-degree rotation of the polarization of the transmitted light to the Pockels cell 6 to convert the light pulse to S-polarized light which is then reflected out of the resonator by the polarizer 5.
摘要:
The energy conversion efficiency from light that is to be converted to converted light of a wavelength conversion device is adjusted so as always to be kept stably at a maximum. The wavelength conversion device is provided with a laser light source 10 for generating a fundamental wave light, a nonlinear optical crystal 16 into which the fundamental wave light is made to enter to generate converted light, and an optical path adjusting portion 30 for adjusting the direction of propagation of the fundamental wave light and the position of the light beam of the fundamental wave light in order to make the fundamental wave light enter the nonlinear optical crystal 16 while satisfying phase matching conditions. The optical path adjusting portion 30 is constituted so as to be provided with a first reflecting mirror 12 and a second reflecting mirror 14, and the first reflecting mirror is provided with adjustment means driven by motors M1 and M2, and the second reflecting mirror is provided with adjustment means driven by motors M3 and M4. Additionally, the wavelength conversion device is provided with a semi-transparent mirror 18 for splitting off and taking out one portion of output light 17, and a photodetector 22 for detecting this split off output light. An electrical signal 23 that is output from the photodetector 22 is input into an adjustment value calculating means 26, and in this adjustment value calculating means, the necessary adjustment values for the adjustment means in the optical path adjusting portion 30 are calculated using fuzzy inference, and this result is output to an optical path adjusting portion control device 28. The optical path adjusting portion control device 28 carries out adjustment of the optical path based upon output signals 27 from the adjustment value calculating means 26.