摘要:
A problem diagnosis method and problem repair method for a laser device are provided. The method includes measuring the intensity of scattered light generated by an optical part inside the laser device; referring to data indicating a temporal change in the scattered light predicted under predetermined operating conditions of the laser device, and predicting the seriousness of the problem from the intensity of scattered light; and determining what kind of maintenance work is necessary based on the seriousness of the problem. Additionally, the seriousness of the problem in the optical part can be predicted by executing fuzzy logic based on membership functions defining the relationship between scattered light intensity and the seriousness of problems of optical parts.
摘要:
A problem diagnosis method and problem repair method for a laser device such as laser treatment devices used in the medical field and laser processing devices used in industrial fields, capable of detecting problems in laser devices early and reducing the time required for maintenance work on the laser devices are provided. The method comprises a step of measuring the intensity of scattered light generated by an optical part inside the laser device; a step of referring to data indicating a temporal change in the scattered light predicted under predetermined operating conditions of the laser device, and predicting the seriousness of the problem from the intensity of scattered light; and a step of determining what kind of maintenance work is necessary based on the seriousness of the problem. Additionally, the seriousness of the problem in the optical part can be predicted by executing fuzzy logic based on membership functions defining the relationship between scattered light intensity and the seriousness of problems of optical parts.
摘要:
A laser radiation device comprises a pumping light emission section, a fiber laser device and a beam guiding section. The pumping light emission section generates and emits pumping light. In the fiber laser device, an optical fiber doped with laser ions is excited by the pumping light and thereby a laser beam including two or more wavelength components is generated. The beam guiding section guides the laser beam into desired place and direction. The laser beam including the two or more wavelength components having characteristic effects are focused by a beam shaping section and applied to the surface of an object. When holmium ions are doped in the optical fiber of the fiber laser device as the laser ions, a laser beam including a 3 &mgr;m band component (which is suitable for precise incision of a living body) and a 2 &mgr;m band component (which is suitable for tissue coagulation and hemostasis) is emitted by the fiber laser device, and the two wavelength components are applied to the surface of the object maintaining coaxiality, thereby the two effects of the two wavelength components are attained simultaneously on the object. The laser radiation device including only one laser device can be implemented with low manufacturing cost and in a small size.
摘要:
The invention offers a low-noise, compact, high-efficiency light generating device and an irradiation method thereof for use in medical applications. A fundamental harmonic laser head 106 is composed of a quasi-continuous wave oscillation mode laser diode (QCW-LD) 101, a laser crystal 103, a rear mirror 104 and an output mirror 105. The QCW-LD 101 is driven by an LD power source 102 capable of modulating the pulse waveform in time. A beam adjusting portion 108 comprises a wave plate, a polarizer, a lens and an isolator. A wavelength converting portion 112 is an optical parametric oscillator (OPO) comprising a non-linear optical crystal 109, an OPO input mirror and an OPO output mirror 111.
摘要:
A femtosecond laser with stabilized output, and a method for stabilizing the output of a femtosecond laser. The femtosecond laser comprises a regenerative amplifier, a photodetector, a control portion and a variable attenuator, wherein the variable attenuator is provided so as to be capable of controlling an output beam of the regenerative amplifier, the photodetector is provided between the regenerative amplifier and the variable attenuator, the photodetector detects an output beam of the regenerative amplifier and transmits the results of the detection to a power controller, and the power controller controls the variable attenuator depending on the a difference between a predetermined target value and the results.
摘要:
The present invention offers a laser oscillator device having sufficient cooling ability to maintain a lasing medium which generates high-density thermal energy at a temperature appropriate for use, while being capable of being made compact. The laser oscillator device comprises an excitation beam source for generating an excitation beam, a laser medium for receiving the excitation beam and performing optical amplification, a laser oscillator device for causing resonance of light emitted by the laser medium for laser oscillation, and a cooling system for cooling said laser medium, wherein the cooling system uses a gas as the heat-carrying medium.
摘要:
A femtosecond laser with stabilized output, and a method for stabilizing the output of a femtosecond laser. The femtosecond laser comprises a regenerative amplifier, a photodetector, a control portion and a variable attenuator, wherein the variable attenuator is provided so as to be capable of controlling an output beam of the regenerative amplifier, the photodetector is provided between the regenerative amplifier and the variable attenuator, the photodetector detects an output beam of the regenerative amplifier and transmits the results of the detection to a power controller, and the power controller controls the variable attenuator depending on the a difference between a predetermined target value and the results.
摘要:
The present invention has the object of offering a laser resonator capable of maintaining high amplification efficiency even if the thermal lensing effect occurring in the laser medium varies during operation or over repeated operation and suspension of the laser device. The laser resonator comprises at least a pair of reflection portions (planar reflective mirrors 3) provided such as to allow a laser beam to oscillate therebetween; a laser medium provided on the optical path of the laser between the pair of reflection portions; an excitation portion (excitation laser device 5) for exciting the laser medium; an optical system (convex lens 1) provided on the optical path of the laser beam between the laser medium and the pair of reflection portions for changing the state of the laser in the laser medium; and a movement portion for moving the optical system along the optical axis of the laser.
摘要:
The invention offers a regenerative optical amplifier enabling voltage to be easily applied to polarizing elements such as Pockels cells, without the need for complicated drive circuitry. An input beam of S-polarized light is reflected by a polarizer 1 and advances to a Pockels cell 2. In the time it takes for the input beam, having once passed through the Pockels cell 2, to be reflected by a reflective mirror 3 and return to the Pockels cell 2, a voltage VP1 causing a 90-degree rotation in the polarization of transmitted light is applied to the Pockels cell 2, and this applied voltage VP1 is maintained. The input beam is converted by the Pockels cell 2 into a P-polarized light pulse which is transmitted by the polarizer. Subsequently, the light pulse is converted from P-polarized light to S-polarized light and back to P-polarized light with each roundtrip of the Pockels cell 2, while passing each time between the reflective mirror 3, laser crystal 4 and reflective mirror 7, so as to be amplified in the resonator formed thereby. The amplified light pulse is extracted by applying a voltage VP2 causing a 90-degree rotation of the polarization of the transmitted light to the Pockels cell 6 to convert the light pulse to S-polarized light which is then reflected out of the resonator by the polarizer 5.
摘要:
In a quasi-three-level solid-state laser that is excited by a semiconductor laser, a temperature-controlling apparatus is used to operate the crystal temperature that enables optimum laser operation in terms of both efficiency and output, based on the effect that cooling the crystal has on reducing the efficiency of absorption of power from the semiconductor excitation laser and the effect that cooling the crystal has on lowering the oscillation threshold value.