Abstract:
A memory device and a method of making the memory device are provided. A first dielectric layer is formed on a substrate, a floating gate is formed on the first dielectric layer, a second dielectric layer is formed on the floating gate, a control gate is formed on the second dielectric layer, and at least one film, including a conformal film, is formed over a surface of the memory device.
Abstract:
A memory device is provided including circuitry for correcting an over-erased memory cell in the memory device. The memory device may include a substrate. A control gate and a floating gate may be formed over the substrate. The memory device may include a source region and a drain region. A first resistive element may be coupled between the source region and the control gate.
Abstract:
A method is provided for programming a nonvolatile memory device including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window that identifies a plurality of memory cells in the array. A first group of memory cells to be programmed is identified from the plurality of memory cells in the programming window. The first group of memory cells is programmed and a programming state of the first group of memory cells is verified.
Abstract:
A method erases a memory cell of a semiconductor device that includes a group of memory cells. Each memory cell includes a group of storage regions. The method includes determining that each storage region of the group of storage regions of a first memory cell is to be erased and erasing the group of storage regions of the first memory cell via a single hot hole injection process.
Abstract:
A semiconductor memory device includes a group of word lines and a structure that is configured to dissipate current from the group of word lines during fabrication of the semiconductor memory device.
Abstract:
A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
Abstract:
A method is provided for erasing a memory cell having a substrate, a control gate, a floating gate, a source region and a drain region. The method includes pre-programming the memory cell to raise a threshold voltage of the memory cell to a first predetermined level, wherein pre-programming the memory cell does not include a verification process for ensuring that the threshold voltage of the memory cell has been raised to the first predetermined level. The memory cell may be erased to lower the threshold voltage of the memory cell to a second predetermined level.
Abstract:
A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.