Abstract:
A fuel system and associated method include a fuel injector and associated injector cup having an integral device that provides rotational orientation while allowing axial sliding engagement of the fuel injector relative to the cup after assembly. One embodiment includes retention tabs in the cup that engage corresponding grooves in the injector.
Abstract:
A system and method for detecting an object is provided. The method includes emitting a light pulse. The method further includes receiving a reflection of the light pulse. The method further includes indicating a presence of the object from the received light pulse. Finally, the method includes adjusting sensitivity of the indicating step based on an elapsed time from the emission.
Abstract:
A cargo management system for a vehicle includes a substantially rigid load floor panel pivotally connected along a first edge to a base to provide a load floor substantially flush with a vehicle floor when stowed, and pivotally connected along an opposite edge to a rigid grid that may be deployed in a first position above and generally parallel to the base, and a second position generally transverse to the base to extend above any vehicle seats and generally separate a cargo area from a passenger area. The cargo management system may also include a secondary door, panel, or other device to cover a storage well or compartment of the base and to support additional cargo when the load floor panel is deployed.
Abstract:
An engine cover for a vehicle includes a frame extending generally about the perimeter of the cover and adapted for mounting to an engine of the vehicle, and a skin extending across and secured to the frame. In one embodiment, the frame is made of a moulded plastic material and the skin is a stamped metal, such as aluminum. In another embodiment, the skin comprises multiple sections each secured to the frame so that one or more sections may be modified to alter the appearance of the cover and/or location of service items, such as an oil fill cap or dip stick for different applications while minimizing the number of components that need modification. A method for covering an engine according to the present invention includes securing at least one engine cover skin to an engine cover frame and securing the frame to an engine.
Abstract:
A system and method for controlling combustion in a direct injection spark ignition internal combustion engine inject fuel directly into a combustion chamber through an injector having an ignition jet or group of jets positioned primarily to support stratified charge formation and a mixing jet or group of jets positioned primarily to support homogeneous charge formation. The ignition jet(s) and mixing jet(s) produce discernibly different yet well connected fuel clouds within the cylinder to provide stable combustion and reduce cylinder wall wetting by appropriate selection of the axial/longitudinal angles and radial/circumferential angles of the ignition and mixing jets.
Abstract:
A control system parameter monitor determines a difference between a desired and estimated or measured parameter value, applies a weighting factor to the difference, and selects a control strategy based on the weighted difference. The weighting factor generally reflects the confidence in the accuracy of the parameter value determined by the parameter monitor. The weighting factor may be determined based on one or more engine or ambient operating conditions or parameters, or based on statistical analyses of monitor values and/or control system parameter values, for example. In one embodiment, an engine torque monitor for an electronic throttle control system uses percent torque deviation and rate of change to select an appropriate weighting factor and determine whether a deviation between desired and estimated or measured torque selects an alternative control strategy.
Abstract:
An internal combustion engine having a plurality of intake and/or exhaust valves associated with each cylinder includes a valvetrain having a fulcrum with a plurality of pivot ball sockets each associated with a rocker arm and pivot ball disposed between the fulcrum and the rocker arm with the fulcrum extending through apertures of the rocker arms and having a plurality of slots, each slot having generally parallel opposing lateral surfaces for receiving and guiding both sides of an associated rocker arm so the rocker arm pivots about the pivot ball in a plane of the rocker arm. The fulcrum can accommodate at least two rocker arms that may operate in non-parallel planes relative to one another and can include bearing and locating surfaces integrally formed to finish dimensions to eliminate machining.
Abstract:
A system and method for securing a fuel injector in an internal combustion engine include a clamp for securing adjacent injectors to a cylinder head. The clamp includes a central portion with a hole for receiving a fastener to secure the clamp to the cylinder head, and a pair of symmetrical crescent-shaped clamping forks forming a U-shaped opening to facilitate lateral sliding engagement with diametrically opposed flatted portions of corresponding fuel injectors. Each arm includes an arcuate pad that engages a corresponding shoulder of the fuel injector to provide an axial clamping force to the fuel injector. The distance between the distal ends of one fork and the semicircular portion of the opposite fork is selected to allow lateral sliding disengagement of the clamp from one of the adjacent injectors without rotation or removal of the other injector to facilitate servicing of individual injectors.
Abstract:
A system and method for controlling a vehicle powertrain having an internal combustion engine include determining a difference between a desired engine torque and a current engine torque, adjusting the difference based on a stored torque offset corresponding to a current engine speed, and controlling the engine to produce a torque corresponding to the adjusted torque difference. The stored torque offset is adjusted when the engine is operating in a predetermined engine speed range based on a steady-state difference between the desired and current engine torque to reduce the steady-state difference to zero. The adjusted torque difference may be limited by a maximum-engine-torque-available parameter and a minimum-engine-torque-available parameter, which is based on an operating temperature, such as the engine coolant temperature. The system and method may also include controlling spark to rapidly reduce current engine torque to the adjusted torque difference value.
Abstract:
Systems and methods for controlling stopping position of a crankshaft during shutdown of a multiple cylinder internal combustion engine influence cylinder pressure independent of associated intake/exhaust valves during shutdown of the engine so the crankshaft stops in a position favorable for restarting. Embodiments include an engine having variable compression ratio cylinders with the compression ratio of the cylinders controlled to vary cylinder pressure during shutdown to control stopping position of the crankshaft, or an auxiliary control valve disposed in a cylinder wall to control pressure within the cylinders during shutdown so the crankshaft stops in a position desirable for restarting.