摘要:
Smooth silicon films having low compressive stress and smooth tensile silicon films are deposited by plasma enhanced chemical vapor deposition (PECVD) using a process gas comprising a silicon-containing precursor (e.g., silane), argon, and a second gas, such as helium, hydrogen, or a combination of helium and hydrogen. Doped smooth silicon films and smooth silicon germanium films can be obtained by adding a source of dopant or a germanium-containing precursor to the process gas. In some embodiments dual frequency plasma comprising high frequency (HF) and low frequency (LF) components is used during deposition, resulting in improved film roughness. The films are characterized by roughness (Ra) of less than about 7 Å, such as less than about 5 Å as measured by atomic force microscopy (AFM), and a compressive stress of less than about 500 MPa in absolute value. In some embodiments smooth tensile silicon films are obtained.
摘要:
A method for depositing a film includes arranging a substrate in a plasma enhanced chemical vapor deposition chamber. A first ashable hardmask (AHM) layer that is carbon-based is deposited on the substrate. During the depositing of the first AHM layer, doping is performed with at least one dopant selected from a group consisting of silicon, silane, boron, nitrogen, germanium, carbon, ammonia, and carbon dioxide. An atomic percentage of the at least one dopant is greater than or equal to 5% of the first AHM layer.
摘要:
Smooth silicon films having low compressive stress and smooth tensile silicon films are deposited by plasma enhanced chemical vapor deposition (PECVD) using a process gas comprising a silicon-containing precursor (e.g., silane), argon, and a second gas, such as helium, hydrogen, or a combination of helium and hydrogen. Doped smooth silicon films and smooth silicon germanium films can be obtained by adding a source of dopant or a germanium-containing precursor to the process gas. In some embodiments dual frequency plasma comprising high frequency (HF) and low frequency (LF) components is used during deposition, resulting in improved film roughness. The films are characterized by roughness (Ra) of less than about 7 Å, such as less than about 5 Å as measured by atomic force microscopy (AFM), and a compressive stress of less than about 500 MPa in absolute value. In some embodiments smooth tensile silicon films are obtained.