Abstract:
A Micro Electro-Mechanical System (MEMS) spectrometer architecture compensates for verticality and dispersion problems using balancing interfaces. A MEMS spectrometer/interferometer includes a beam splitter formed on a first surface of a first medium at an interface between the first medium and a second medium, a first mirror formed on a second surface of the first medium, a second mirror formed on a third surface of the first medium and balancing interfaces designed to minimize both a difference in tilt angles between the surfaces and a difference in phase errors between beams reflected from the first and second mirrors.
Abstract:
An electrostatic comb drive actuator for a MEMS device includes a flexure spring assembly and first and second comb drive assemblies, each coupled to the flexure spring assembly on opposing sides thereof. Each of the first and second comb assemblies includes fixed comb drive fingers and moveable comb drive fingers coupled to the flexure spring assembly and extending towards the fixed comb drive fingers. The comb drive fingers are divided equally between the first and second comb drive assemblies and placed symmetrically about a symmetry axis of the flexure spring assembly. When electrically energized, the moveable comb drive fingers of both the first and second comb drive assemblies simultaneously move towards the fixed comb drive fingers of the first and second comb drive assemblies.
Abstract:
An optical Micro Electro-Mechanical System (MEMS) device provides an optical path retardation multiplier. The MEMS device includes a moveable corner cube reflector, a fixed minor and a MEMS actuator. The moveable corner cube reflector is optically coupled to receive an incident beam and reflect the incident beam through 180 degrees towards the fixed mirror. The fixed minor is optically coupled to reflect a reflected beam back towards the moveable corner cube reflector along a reverse path of the incident beam. The MEMS actuator is coupled to the moveable corner cube reflector to cause a displacement of the moveable corner cube reflector to extend an optical path length of the reflected beam.
Abstract:
A spatial splitting-based optical Micro Electro-Mechanical Systems (MEMS) Interferometer includes a spatial splitter for spatially splitting an input beam into two interferometer beams and a spatial combiner for spatially combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the first interferometer beam and the second interferometer beam.
Abstract:
An electrostatic comb drive actuator for a MEMS device includes a flexure spring assembly and first and second comb drive assemblies, each coupled to the flexure spring assembly on opposing sides thereof. Each of the first and second comb assemblies includes fixed comb drive fingers and moveable comb drive fingers coupled to the flexure spring assembly and extending towards the fixed comb drive fingers. The comb drive fingers are divided equally between the first and second comb drive assemblies and placed symmetrically about a symmetry axis of the flexure spring assembly. When electrically energized, the moveable comb drive fingers of both the first and second comb drive assemblies simultaneously move towards the fixed comb drive fingers of the first and second comb drive assemblies.
Abstract:
An optical Micro Electro-Mechanical System (MEMS) device provides an optical path retardation multiplier. The MEMS device includes a moveable corner cube reflector, a fixed minor and a MEMS actuator. The moveable corner cube reflector is optically coupled to receive an incident beam and reflect the incident beam through 180 degrees towards the fixed mirror. The fixed minor is optically coupled to reflect a reflected beam back towards the moveable corner cube reflector along a reverse path of the incident beam. The MEMS actuator is coupled to the moveable corner cube reflector to cause a displacement of the moveable corner cube reflector to extend an optical path length of the reflected beam.
Abstract:
A spatial splitting-based optical Micro Electro-Mechanical Systems (MEMS) Interferometer includes a spatial splitter for spatially splitting an input beam into two interferometer beams and a spatial combiner for spatially combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the first interferometer beam and the second interferometer beam.
Abstract:
A Micro Electro-Mechanical System (MEMS) spectrometer architecture compensates for verticality and dispersion problems using balancing interfaces. A MEMS spectrometer/interferometer includes a beam splitter formed on a first surface of a first medium at an interface between the first medium and a second medium, a first mirror formed on a second surface of the first medium, a second mirror formed on a third surface of the first medium and balancing interfaces designed to minimize both a difference in tilt angles between the surfaces and a difference in phase errors between beams reflected from the first and second mirrors.