摘要:
A method of producing hydrothermally stable chabazite (CHA) zeolites is disclosed. The disclosed method is based on the use of reaction mixtures that (1) are essentially void of alkali metal cations and (2) contain the N,N,N-trimethyl-1-adamantyl ammonium (TMAda+) organic as the sole OSDA. The disclosed method results in a higher crystalline CHA zeolite that exhibits hydrothermal stability. There is also disclosed a zeolite material having a CHA-type framework structure made by the disclosed method. A method of selective catalytic reduction of NOx in exhaust gas using the material described herein is also disclosed.
摘要:
A process for the oxidation of hydrocarbons comprises contacting the hydrocarbon with an oxygen-containing gas in the presence of a catalyst comprising a microporous solid support, preferably a zeolite, having from 8- to 12-ring open windows and comprising non-framework metal cations selected from manganese, iron, cobalt, vanadium, chromium, copper, nickel, and ruthenium, and mixtures thereof, providing that the oxygen-containing gas does not contain significant amounts of added hydrogen. The catalyst is novel and forms part of the invention.The process may be used for oxidation of alkanes, cycloalkanes, benzene and alkylbenzenes, and is suitable for use in regioselective terminal oxidation of straight chain alkanes and for selective oxidation/separation of p-dialkylbenzenes from an alkylbenzene mixture, for example, p-xylene from an isomeric mixture of xylenes.
摘要:
There is disclosed iron-containing aluminosilicate zeolites having both framework iron and iron cations on the ion-exchange sites. There is also disclosed a direct synthesis method of making an iron-containing aluminosilicate zeolite, which does not require the use of an intermediate step, such as ion-exchange or impregnation. In addition, there is disclosed a method of using the iron-containing aluminosilicate zeolite disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia, to reduce or remove nitric oxides from exhaust emissions.
摘要:
There is disclosed a microporous crystalline material comprising a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) greater than 15, wherein the metal containing chabazite retains at least 80% of its initial surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for up to 1 hour. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
摘要:
A method of producing hydrothermally stable chabazite (CHA) zeolites is disclosed. The disclosed method is based on the use of reaction mixtures that (1) are essentially void of alkali metal cations and (2) contain the N,N,N-trimethyl-1-adamantyl ammonium (TMAda+) organic as the sole OSDA. The disclosed method results in a higher crystalline CHA zeolite that exhibits hydrothermal stability. There is also disclosed a zeolite material having a CHA-type framework structure made by the disclosed method. A method of selective catalytic reduction of NOx in exhaust gas using the material described herein is also disclosed.
摘要:
There is disclosed a microporous crystalline material comprising a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) greater than 15, wherein the metal containing chabazite retains at least 80% of its initial surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for up to 1 hour. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
摘要:
There is disclosed a method to synthesize microporous crystalline material comprising a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) between 5 and 15, wherein the method is carried out without the use of an organic structural directing agent and without requiring calcination. There is also disclosed a large crystal organic free chabazite made according to the disclosed method. In addition, there are disclosed methods of using the disclosed crystalline material, such as in the selective catalytic reduction of NOx in exhaust gases.
摘要:
There is disclosed an organic-free, metal-containing zeolite Beta with a silica-to-alumina ratio (SAR) ranging from 5 and 20, and a metal content of at least 0.5 wt. %. There is also disclosed a method of making such a zeolite Beta without organic structure directing agent (SDA). The metal, which may comprise Fe or Cu, can be found in amounts ranging from 1-10 wt. %. A method of selective catalytic reduction of nitrogen oxides in exhaust gases using the disclosed zeolite is also disclosed.
摘要:
There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
摘要:
There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.