Abstract:
A process of forming an electronic device can include forming a stack including a tunnel barrier layer. The tunnel barrier layer can have a ratio of the metal atoms to oxygen atoms of greater than a stoichiometric ratio, wherein the ratio has a particular value. The process can also include forming a gettering layer having a composition capable of gettering oxygen, and depositing an insulating layer over the gettering layer. The process can further include exposing the insulating layer to a temperature of at least approximately 60° C. In one embodiment, after such exposure, a portion of the gettering layer is converted to an insulating material. In another embodiment, an electronic device can include a magnetic tunnel junction and an adjacent insulating layer lying within an opening in another insulating layer.
Abstract:
Methods and apparatus are provided for magnetoresistive memories employing magnetic tunnel junction (MTJ). The apparatus comprises a MTJ (61, 231), first (60, 220) and second (66, 236) electrodes coupled, respectively, to first (62, 232) and second (64, 234) magnetic layers of the MTJ (61, 231), first (54, 204) and second (92, 260) write conductors magnetically coupled to the MTJ (61, 231) and spaced apart from the first (60, 220) and second (66, 236) electrodes, and at least one etch-stop layer (82, 216) located between the first write conductor (54, 204) and the first electrode (60, 220), having an etch rate in a reagent for etching the MTJ (61, 231) and/or the first electrode (60, 220) that is at most 25% of the etch rate of the MTJ (61, 231) and/or first conductor (60, 220) to the same reagent, so as to allow portions of the MTJ (61, 231) and first electrode (60, 220) to be removed without affecting the underlying first write conductor (54, 204). In a further embodiment, a second etch-stop layer (90, 250) is located between the second electrode (66, 236) and the second write conductor (92, 260). Improved yield and performance are obtained.
Abstract:
Fabricating a magnetoresistive random access memory cell and a structure for a magnetoresistive random access memory cell begins by providing a substrate having a transistor formed therein. A contact element is formed electrically coupled to the transistor and a dielectric material is deposited within an area partially bounded by the contact element. A digit line is formed within the dielectric material, the digit line overlying a portion of the contact element. A conductive layer is formed overlying the digit line and in electrical communication with the contact element.
Abstract:
A method of fabricating a MRAM device with a taper comprising the steps of providing a substrate, forming a dielectric region with positioned on the substrate, patterning and isotropically etching through the dielectric region to the substrate to form a trench, depositing the MRAM device within the trench wherein the MRAM device includes a first ferromagnetic region with a width positioned on the substrate, a non-ferromagnetic spacer layer with a width positioned on the first ferromagnetic region, and a second ferromagnetic region with a width positioned on the non-ferromagnetic spacer layer wherein the taper is formed by making the width of the first ferromagnetic region greater than the width of the non-ferromagnetic spacer layer, and the width of the non-ferromagnetic spacer layer greater than the width of the second ferromagnetic region so that the first ferromagnetic region is separated from the second ferromagnetic region.
Abstract:
A method of forming a magnetoelectronic device includes forming a dielectric material (114) surrounding a magnetic bit (112), etching the dielectric material (114) to define an opening (122) over the magnetic bit (112) without exposing the magnetic bit (112), the opening (122) having a sidewall, depositing a blanket layer (132) of cladding material over the dielectric material (118), including over the sidewall, removing by a sputtering process the blanket layer (132) in the bottom of the opening (122) and the dielectric material (124) over the magnetic bit (112), and forming a conductive material (146) within the opening (122) to form a bit line (154). This process reduces errors caused by process irregularities such as edges of the bits (112) protruding and thereby causing defects in the cladding layer (132) formed thereover. A bit line or digit line so formed may optionally be tapered at the ends (182, 184) to prevent magnetic reversal of the bit line magnetic moment that otherwise may occur due to external magnetic fields.
Abstract:
An apparatus (46, 416, 470) is provided for sensing physical parameters. The apparatus (46, 416, 470) comprises a magnetic tunnel junction (MTJ) (32, 432), first and second electrodes (36, 38, 426, 434), a magnetic field source (MFS) (34, 445, 476) whose magnetic field (35) overlaps the MTJ (32, 432) and a moveable magnetic cladding element (33, 448, 478) whose proximity (43, 462, 479, 479′) to the MFS (34, 445, 476) varies in response to an input to the sensor. The MFS (34, 445, 476) is located between the cladding element (33, 448, 478) and the MTJ (32, 432). Motion (41, 41′, 41-1, 464, 477) of the cladding element (33, 448, 478) relative to the MFS (34, 445, 476) in response to sensor input causes the magnetic field (35) at the MTJ (32, 432) to change, thereby changing the electrical properties of the MTJ (32, 432). A one-to-one correspondence (54) between the sensor input and the electrical properties of the MTJ (32, 432) is obtained.
Abstract:
A method for contacting an electrically conductive layer overlying a magnetoelectronics element includes forming a memory element layer overlying a dielectric region. A first electrically conductive layer is deposited overlying the memory element layer. A first dielectric layer is deposited overlying the first electrically conductive layer and is patterned and etched to form a first masking layer. Using the first masking layer, the first electrically conductive layer is etched. A second dielectric layer is deposited overlying the first masking layer and the dielectric region. A portion of the second dielectric layer is removed to expose the first masking layer. The second dielectric layer and the first masking layer are subjected to an etching chemistry such that the first masking layer is etched at a faster rate than the second dielectric layer. The etching exposes the first electrically conductive layer.
Abstract:
According to an example embodiment, a semiconductor device includes a lower electrode (316) disposed on an oxide layer (302), an upper electrode (320) disposed on the lower electrode, a dielectric pattern (322) disposed on the oxide layer and surrounding the upper electrode, the upper electrode protruding above an upper surface of the dielectric pattern, and a contact pattern (328) that is contiguous with the upper electrode and the dielectric pattern.
Abstract:
Methods and apparatus are provided for magnetoresistive memories employing magnetic tunnel junction (MTJ). The apparatus comprises a MTJ (61, 231), first (60, 220) and second (66, 236) electrodes coupled, respectively, to first (62, 232) and second (64, 234) magnetic layers of the MTJ (61, 231), first (54, 204) and second (92, 260) write conductors magnetically coupled to the MTJ (61, 231) and spaced apart from the first (60, 220) and second (66, 236) electrodes, and at least one etch-stop layer (82, 216) located between the first write conductor (54, 204) and the first electrode (60, 220), having an etch rate in a reagent for etching the MTJ (61, 231) and/or the first electrode (60, 220) that is at most 25% of the etch rate of the MTJ (61, 231) and/or first conductor (60, 220) to the same reagent, so as to allow portions of the MTJ (61, 231) and first electrode (60, 220) to be removed without affecting the underlying first write conductor (54, 204). In a further embodiment, a second etch-stop layer (90, 250) is located between the second electrode (66, 236) and the second write conductor (92, 260). Improved yield and performance are obtained.
Abstract:
An MRAM architecture is provided that reduces the number of isolation transistors. The MRAM architecture includes magnetoresistive memory cells that are electrically coupled to form a ganged memory cell. The magnetoresistive memory cells of the ganged memory cell are formed with Magnetic Tunnel Junctions (MTJs) and formed without isolation devices, such as isolation transistors, and a programming line and a bit line are adjacent to each of the magnetoresistive memory cells. Preferably, the magnetoresistive memory cells of the ganged memory cell only include MTJs, and a programming line and a bit line are adjacent to each of the magnetoresistive memory cells.