Abstract:
Provided is a method of fabricating a T-type gate including the steps of: forming a first photoresist layer, a blocking layer and a second photoresist layer to a predetermined thickness on a substrate, respectively; forming a body pattern of a T-type gate on the second photoresist layer and the blocking layer; exposing a predetermined portion of the second photoresist layer to form a head pattern of the T-type gate, and performing a heat treatment process to generate cross linking at a predetermined region of the second photoresist layer except for the head pattern of the T-type gate; performing an exposure process on an entire surface of the resultant structure, and then removing the exposed portion; and forming a metal layer of a predetermined thickness on an entire surface of the resultant structure, and then removing the first photoresist layer, the blocking layer, the predetermined region of the second photoresist layer in which the cross linking are generated, and the metal layer, whereby it is possible to readily perform a compound semiconductor device manufacturing process, and to reduce manufacturing cost by means of the increase of manufacturing yield and the simplification of manufacturing processes.
Abstract:
Provided is a wafer exposure apparatus used in a semiconductor device manufacturing process, the exposure apparatus including: a reflective mirror for reflecting light provided from a light source; an optical path changer for changing a path of the light provided from the reflective mirror; first mirrors installed at both sides of the optical path changer to change the path of the light; second mirrors installed at both sides of a material to change the path of the light; and third mirrors installed at both sides of a mask to enter the light reflected by the first mirrors to the mask and to enter the light passed through the mask into the second mirrors, whereby it is possible to continuously expose one surface, both surfaces or a specific surface of a wafer in a state that the wafer is once aligned.
Abstract:
Provided is a method of fabricating a T-type gate including the steps of: forming a first photoresist layer, a blocking layer and a second photoresist layer to a predetermined thickness on a substrate, respectively; forming a body pattern of a T-type gate on the second photoresist layer and the blocking layer; exposing a predetermined portion of the second photoresist layer to form a head pattern of the T-type gate, and performing a heat treatment process to generate cross linking at a predetermined region of the second photoresist layer except for the head pattern of the T-type gate; performing an exposure process on an entire surface of the resultant structure, and then removing the exposed portion; and forming a metal layer of a predetermined thickness on an entire surface of the resultant structure, and then removing the first photoresist layer, the blocking layer, the predetermined region of the second photoresist layer in which the cross linking are generated, and the metal layer, whereby it is possible to readily perform a compound semiconductor device manufacturing process, and to reduce manufacturing cost by means of the increase of manufacturing yield and the simplification of manufacturing processes.
Abstract:
Provided is a photodetector in which a transparent nonconductive material having an interface charge and a trapped charge is deposited on a semiconductor surface so as to form a depletion region on the surface of the semiconductor, and the depletion region is employed as an optical detecting region, thereby not only improving detection with respect to light having a wavelength of ultraviolet and blue ranges but also filtering light having a wavelength of visible and infrared ranges, and in which a fabricating process thereof is compatible with a universal silicon CMOS process.
Abstract:
Provided is a wafer exposure apparatus used in a semiconductor device manufacturing process, the exposure apparatus including: a reflective mirror for reflecting light provided from a light source; an optical path changer for changing a path of the light provided from the reflective mirror; first mirrors installed at both sides of the optical path changer to change the path of the light; second mirrors installed at both sides of a material to change the path of the light; and third mirrors installed at both sides of a mask to enter the light reflected by the first mirrors to the mask and to enter the light passed through the mask into the second mirrors, whereby it is possible to continuously expose one surface, both surfaces or a specific surface of a wafer in a state that the wafer is once aligned.