摘要:
A method for porosifying a Ill-nitride material in a semiconductor structure is provided, the semiconductor structure comprising a sub-surface structure of a first Ill-nitride material, having a charge carrier density greater than 5×1017 cm−3, beneath a surface layer of a second Ill-nitride material, having a charge carrier density of between 1×1014 cm−3 and 1×1017 cm−3. The method comprises the steps of exposing the surface layer to an electrolyte, and applying a potential difference between the first Ill-nitride material and the electrolyte, so that the sub-surface structure is porosified by electrochemical etching, while the surface layer is not porosified. A semiconductor structure and uses thereof are further provided.
摘要:
A method for porosifying a III-nitride material in a semiconductor structure is provided, the semiconductor structure comprising a sub-surface structure of a first III-nitride material, having a charge carrier density greater than 5×1017 cm−3, beneath a surface layer of a second III-nitride material, having a charge carrier density of between 1×1014 cm−3 and 1×1017 cm−3. The method comprises the steps of exposing the surface layer to an electrolyte, and applying a potential difference between the first III-nitride material and the electrolyte, so that the sub-surface structure is porosified by electrochemical etching, while the surface layer is not porosified. A semiconductor structure and uses thereof are further provided.
摘要:
A method for etching a semiconductor structure (110) is provided, the semiconductor structure comprising a sub-surface quantum structure (30) of a first III-V semiconductor material,beneath a surface layer (31) of a second III-V semiconductor material having a charge carrier density of less than 5×1017 cm3. The sub-surface quantum structure may comprise, for example, a quantum well, or a quantum wire, or a quantum dot. The method comprises the steps of exposing the surface layer to an electrolyte (130), and applying a potential difference between the first III-V semiconductor material and the electrolyte, to electrochemically etch the sub-surface quantum structure (30) to form a plurality of nanostructures, while the surface layer (31) is not etched. A semiconductor structure, uses thereof, and devices incorporating such semiconductor structures are further provided.
摘要:
The present disclosure relates to compound of structural Formula I and a method for preparing said compounds. The disclosure further relates to a method of employing the Formula I compounds for modulation of Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in cancer cells, and the corresponding use of compound of Formula I as anti-cancer agents.
摘要:
A method for etching a semiconductor structure (110) is provided, the semiconductor structure comprising a sub-surface quantum structure (30) of a first III-V semiconductor material,beneath a surface layer (31) of a second III-V semiconductor material having a charge carrier density of less than 5×1017 cm−3. The sub-surface quantum structure may comprise, for example, a quantum well, or a quantum wire, or a quantum dot. The method comprises the steps of exposing the surface layer to an electrolyte (130), and applying a potential difference between the first III-V semiconductor material and the electrolyte, to electrochemically etch the sub-surface quantum structure (30) to form a plurality of nanostructures, while the surface layer (31) is not etched. A semiconductor structure, uses thereof, and devices incorporating such semiconductor structures are further provided.
摘要:
A sensor for use in biosensing is disclosed. The sensor comprises a photonic crystal waveguide comprising a photonic crystal comprising holes in a layer of dielectric material and a waveguide in the photonic crystal. The sensor comprises at least one strip disposed on the photonic crystal waveguide, spaced apart along, and running across the photonic crystal waveguide so as to form respective strip cavities, each of the at least one strip including a respective layer of material for sensing presence of a respective analyte; and a slot running along the waveguide of the photonic crystal waveguide.
摘要:
A method for porosifying a Ill-nitride material in a semiconductor structure is provided, the semiconductor structure comprising a sub-surface structure of a first Ill-nitride material, having a charge carrier density greater than 5×1017 cm−3, beneath a surface layer of a second Ill-nitride material, having a charge carrier density of between 1×1014 cm−3 and 1×1017 cm−3. The method comprises the steps of exposing the surface layer to an electrolyte, and applying a potential difference between the first Ill-nitride material and the electrolyte, so that the sub-surface structure is porosified by electrochemical etching, while the surface layer is not porosified. A semiconductor structure and uses thereof are further provided.
摘要:
The present disclosure relates to compound of structural Formula I and a method for preparing said compounds. The disclosure further relates to a method of employing the Formula I compounds for modulation of Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in cancer cells, and the corresponding use of compound of Formula I as anti-cancer agents.
摘要:
Articles comprising a surface or porous substrate and having on said surface or porous substrate a coating comprising microfibrillated cellulose or nanocellulose, methods of applying a coating comprising microfibrillated cellulose or nanocellulose to a surface or porous substrate, compositions comprising microfibrillated cellulose or nanocellulose, and the use of such compositions in methods of preparing an antimicrobial surface coating, and improving filtration efficiency and preparing an antimicrobial surface and/or antiviral surface coating.
摘要:
A quantum light emitting device includes a carrier substrate, an insulator, a first semiconductor device, a second semiconductor device, a first contact, and a second contact. The quantum light device includes a carrier substrate comprising silicon and configured with an electrically insulating top surface. The quantum light device also includes an insulator configured on the carrier substrate. The quantum light device includes a first semiconductor structure comprising a first semiconductor material configured on the insulator. Further, the quantum light device includes a second semiconductor structure comprising a second semiconductor material configured on the insulator, with an overlap region of the second semiconductor structure electrically coupling with the first semiconductor structure, a dimensional characteristic of the overlap region being configured to limit a photon emission from the overlap region to a single photon.