摘要:
A mesa stripe buried heterostructure semiconductor laser with no intediffusion of atoms between doped regions and a method of its formation are disclosed. A double dielectric mask is used to form the mesa stripe. The first mask is then partially etched and a Si-doped InP layer is selectively grown. The first and second mask are subsequently etched away and an InP(Zn) clad layer, along with a Zn-doped InGaAs contact layer, are formed. This way, the resulting structure has no contact between the InP(Zn) clad layer and the InP(Fe) layer, and the dopant atoms interdiffusion is suppressed.
摘要:
An optical modulator includes first and second modulator segments. The first and second modulator segments form an optical signal path for an optical signal. The optical modulator also includes an electrical signal path capable of receiving and carrying a modulation signal, which is applied to the optical signal at the first and second modulation segments to generate a modulated optical signal. An inductive element may be disposed between electrical inputs to the first and second modulator segments. The optical modulator may be an electro-absorption modulator (EAM). The inductive element may be an inductor or a transmission line segment.
摘要:
A system for measuring the thickness of a wafer while it is being thinned this disclosed. The system and method provide integrating an optical reflectometer into a common wafer thinning apparatus. Using reflected optical signals from the top and bottom of the wafer, the thickness of the wafer is determined with time based calculations in real-time while thinning is occurring. Once the desired thickness has been reached, the thinning operation is halted. By performing the measurement in-situ, this system and a method prevent scrapping of wafers which are overthinned and the reloading of wafers which are too thick. Since an optical reflectometer is used, the measurement is contactless, and thus prevents possible damage to wafers during measurement.
摘要:
The invention is an optoelectronic device and method of fabrication where at least two optical devices are formed on a single semiconductor substrate, with each optical device including an active region such as a multi-quantum well region. The active devices are spatially separated and optically coupled by a passive waveguide formed over the substrate which provides butt joints with the active regions. The butt joints can be optimized independently from the active regions thus improving yield.