Abstract:
A solar cell, comprising: a substrate, including p-n doping structure formed within said substrate; material attached to the back of said substrate, where said material includes glass mixture, aluminum material, organic medium and additive. Wherein said glass needs to be formed by combining two or more glasses: the main composition for post-mixed glass should include Al2O3, Bi2O5, B2O3, SiO2, PbO, Tl2O3 and other metal and non-metal oxides. For the material composition, aluminum powder content is 60˜80 mass %, with approximately 90 to 99.99% purity. Additives include C10˜C24 stearic acid, with the content of less than 5 mass %. The C10˜C24 stearic acid may include oleic acid. Organic medium content is roughly 20˜35 mass %. Wherein said organic medium includes 60˜90 mass % ether class organic solvent, 10˜20 mass % cellulosic resin and 1˜5 mass % of leveling agent, rheological agent or thixotropic agent.
Abstract:
Within each of: (1) a method for inspecting a reticle; (2) an apparatus for inspecting the reticle; and (3) a method for forming a microelectronic layer while employing the method for inspecting the reticle and the apparatus for inspecting the reticle, there is employed a pair of wedges whose inclined surfaces are counter-opposed and separated by a gap. The pair of wedges whose inclined surfaces are counter-opposed and separated by the gap is employed in conjunction with an inspection light source and detector for determining an optimizing an optical characteristic of the reticle, such as an optimized optical interference characteristic of the reticle, such that the reticle may be optimally aligned within a photoexposure apparatus and there may be formed with optimal registration while employing the reticle and the photoexposure apparatus a microelectronic layer within a microelectronic fabrication.
Abstract:
A conductive paste includes: at least one metal powder, an organic vehicle, a glass and a surfactant having a representative formula as follows: Mx(R)y(Q)z, wherein M is selected from a metal element and a semiconductive element, R is hydrophilic group directly connected to M and one will be able to hydrolyze by water to form another hydrophilic group, and Q is a hydrophobic group. The hydrophilic functional group of the surfactant will attach on the metal powder surface closely. Therefore, the surfactant can disperse the metal powder in the organic vehicle well and prevent paste from aggregating.
Abstract:
A system for detecting a direct current (DC) component of a pulse-width modulated (PWM) signal includes a modulator configured to provide at least one PWM signal to an input of an amplifier. A DC detector is configured to detect a DC component of a selected one of the at least one PWM signal as a function of a switching frequency of the selected PWM signal. The DC detector provides at least one report signal that indicates a level of the DC component of the selected PWM signal relative to a predetermined threshold.
Abstract:
A system for detecting a direct current (DC) component of a pulse-width modulated (PWM) signal includes a modulator configured to provide at least one PWM signal to an input of an amplifier. A DC detector is configured to detect a DC component of a selected one of the at least one PWM signal as a function of a switching frequency of the selected PWM signal. The DC detector provides at least one report signal that indicates a level of the DC component of the selected PWM signal relative to a predetermined threshold.