摘要:
An anti-surge over-current protection device comprises a PTC material layer, first and second conductive layers. The PTC material layer has opposite first and second planar surfaces. The first conductive layer is in physical contact with the first planar surface and comprises a plurality of first conductive members isolated from each other. The second conductive layer is in physical contact with the second planar surface, and comprises a plurality of second conductive members isolated from each other. The first conductive layer, the PTC material layer and the second conductive layer form a circuit containing first and second conductive paths. In the first conductive path, the PTC material layer forms a first series connection resistive component having at least two resistors. In the second conductive path, the PTC material layer forms a second series connection resistive component having at least two resistors.
摘要:
An over-current protection apparatus applied to a secondary battery comprises a lead frame, an IC and a PTC device. The lead frame has a carrier portion and two end portions bending therefrom to form an accommodating space. The two end portions electrically connect to positive and negative electrodes of the secondary battery. The carrier portion comprises a plurality of blocks. The IC and PTC device are disposed on the carrier portion and received in the accommodating space and encapsulated by a cover. The PTC device comprises a first electrode and a second electrode, and the first electrode and the second electrode electrically connect to different blocks of the carrier portion.
摘要:
An over-current protection device comprises a PTC device, first and second electrodes, a first welding metal plate and a second welding metal plate. The PTC device comprises a first conductive layer, at second conductive layer and a PTC polymeric material layer laminated therebetween. The first electrode electrically connects to the first conductive layer. The second electrode electrically connects to the second conductive layer and is separated from the first electrode. The first welding metal plate is formed on an upper surface of the device and connects to the first electrode. The second welding metal plate is formed on the upper surface or a lower surface of the device and connects to the second electrode. The first and second welding metal plates are placed at two opposite ends of the strip-like structure, and each of them has a thickness sufficient to withstand spot-welding without significant resultant damage to the PTC device.
摘要:
A surface mountable over-current protection device having upper and lower surfaces comprises a PTC device, first and second electrodes, and first and second circuits. The PTC device comprises a PTC material layer and first and second conductive layers. The PTC material layer is disposed between the conductive layers and comprises crystalline polymer and conductive filler dispersed therein. The first electrode comprises a pair of first metal foils, whereas the second electrode comprises a pair of second metal foils. The first circuit connects the first electrode and conductive layer, and has a first planar line extending horizontally. The second circuit connects the second electrode and conductive layer, and has a second planar line extending horizontally. At least one of the planar lines has a thermal resistance sufficient to mitigate heat dissipation by which the over-current protection device undergoes a test at 25° C. and 8 amperes can trip within 60 seconds.
摘要:
An over-current protection device has a PTC device, first and second electrodes and an insulation layer. The PTC device comprises first and second electrically conductive members and a PTC layer laminated between the first and second electrically conductive members. The first and second electrodes are electrically connected to the first and second electrically conductive members, respectively. The insulation layer is disposed on a surface of the first electrically conductive member. The device is a stack structure extending along a first direction, and comprises at least one hole extending along a second direction substantially perpendicular to the first direction. The value of the covered area of the hole divided by the area of the form factor of the over-current protection device is not less than 2%, and the value of the thickness of the device divided by the number of the PIC devices is less than 0.7 mm.
摘要:
An over-current and over-temperature protection device includes a first conductive member, a second conductive member, a resistive device, at least one current input electrode and at least two current output electrodes. The first conductive member has a current input portion and a first insulative portion restricting current to only input through the current input portion, and the second conductive member has two or more current output portions and a second insulative portion restricting current to only output through the current output portions, in which the current output portions are electrically isolated by the second insulative portion. The resistive device is laminated between the first conductive member and the second conductive member. The current input electrode is electrically connected to the current input portion, and current output electrodes are electrically connected to the current output portions individually.
摘要:
An over-current protection device includes a first conductive member, a second conductive member, a resistive device and a temperature sensing switch. The first conductive member includes a first electrode foil and a second electrode foil those are formed on a same plane. The resistive device is laminated between the first conductive member and the second conductive member and exhibits positive temperature coefficient or negative temperature coefficient behavior. The temperature sensing switch can switch the first electrode foil and the second electrode foil between electrically conductive status and current-restriction status, e.g., open circuit, according to temperature variation. The threshold temperature of the temperature sensing switch is lower than the trip temperature of the resistive device.
摘要:
An over-current protection device comprises a PTC device, first and second electrodes, a first welding metal plate and a second welding metal plate. The PTC device comprises a first conductive layer, at second conductive layer and a PTC polymeric material layer laminated therebetween. The first electrode electrically connects to the first conductive layer. The second electrode electrically connects to the second conductive layer and is separated from the first electrode. The first welding metal plate is formed on an upper surface of the device and connects to the first electrode. The second welding metal plate is formed on the upper surface or a lower surface of the device and connects to the second electrode. The first and second welding metal plates are placed at two opposite ends of the strip-like structure, and each of them has a thickness sufficient to withstand spot-welding without significant resultant damage to the PTC device.
摘要:
An over-current protection device, which can be surface-mounted and stand upright on a circuit board and withstand 60 to 600 volts, comprises a PTC device, first and second electrodes. The PTC device is a laminated structure comprising first and second conductive layers and a PTC material layer. The first and second conductive layers are in physical contact with first and second planar surfaces of the PTC material layer, respectively. The first electrode is disposed on the first conductive layer. The second electrode is disposed on the second conductive layer and is separated from the first electrode. The first electrode, the second electrode and the PTC device commonly form an end surface which is substantially perpendicular to the first and second planar surfaces. The first electrode and the second electrode at the end surface serve as interfaces electrically connecting to the circuit board.
摘要:
An anti-surge over-current protection device comprises a PTC material layer, first and second conductive layers. The PTC material layer has opposite first and second planar surfaces. The first conductive layer is in physical contact with the first planar surface and comprises a plurality of first conductive members isolated from each other. The second conductive layer is in physical contact with the second planar surface, and comprises a plurality of second conductive members isolated from each other. The first conductive layer, the PTC material layer and the second conductive layer form a circuit containing first and second conductive paths. In the first conductive path, the PTC material layer forms a first series connection resistive component having at least two resistors. In the second conductive path, the PTC material layer forms a second series connection resistive component having at least two resistors.