Abstract:
The present invention provides process for preparing an alkylate comprising contacting in a reaction zone a hydro-carbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate-comprising effluent, in which process: solids are formed in the reaction zone; a solids-comprising effluent comprising hydrocarbons and acidic ionic liquid is withdrawn from the reaction zone; and at least part of the solids-comprising effluent is treated to remove at least part of the solids to obtain a solids-depleted effluent. The invention further provides a process for treating an acidic ionic liquid comprising at least 0.1 wt % of solids based on the total weight of the acidic ionic liquid, wherein at least part of the solids are removed.
Abstract:
The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; and which method includes: —providing a second separator unit suitable for the separation of solids from liquids downstream of the reactor unit suitable to reduce the solids content in at least part of the reactor effluent.
Abstract:
Disclosed is a method for regenerating and maintaining the activity of an ionic liquid catalyst, which comprises supplying hydrogen halide or halogenated hydrocarbon to the acidic ionic liquid catalyst or alkylation materials during alkylation reaction, wherein said ionic liquid catalyst is used to catalyze alkylation of C4 alkene and alkane. Disclosed is also a method for producing alkylate by alkylation reaction, which comprises supplying hydrogen halide or halogenated hydrocarbon to the acidic ionic liquid catalyst or reaction materials during said alkylation reaction. The method can prolong the service life of the acidic ionic liquid catalyst, does not influence the quality of the alkylate, and has simple operation. The processed amount of materials may be 1000 times more than the used amount of the ionic liquid.
Abstract:
The present invention provides process for preparing an alkylate comprising contacting in a reactor a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate, which process further comprises: -withdrawing an alkylate-comprising reactor effluent from the reactor, wherein the reactor effluent comprises an ionic liquid phase and a hydrocarbon phase; -separating at least part the reactor effluent into a hydrocarbon phase effluent and a multiple-phase effluent in a centrifugal separation unit; -fractionating at least part of said hydrocarbon phase effluent into at least a stream comprising alkylate and a stream comprising isoparaffin.
Abstract:
The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: a reactor unit for contacting catalyst and hydrocarbon reactants; a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; and which method includes: providing a second separator unit suitable for the separation of solids from liquids downstream of the reactor unit suitable to reduce the solids content in at least part of the reactor effluent.
Abstract:
The present invention is a separation method and system in which granulation of coupled post-extraction asphalt residue is used to achieve deep separation of heavy oil. A dispersion solvent is introduced into the asphalt phase after separation by solvent extraction and the asphalt phase undergoes rapid phase change in a gas-solid separator and is dispersed into solid particles while the solvent vaporizes, resulting in low temperature separation of asphalt and solvent with adjustable size of the asphalt particles. The separation method of this invention also includes a three-stage separation of heavy oil feedstock, in which the deasphalted oil phase separated from heavy oil is treated with supercritical solvent and results in the further separation of the resin portion of the deasphalted oil, maximizing the yield and quality of the deasphalted oil. The processes and systems in this invention use atmospheric pressure and a low temperature gas-solid separator instead of a high temperature and high pressure furnace and do not require the feed pre-heating or heat exchange equipment at the inlet of resin separator column, resulting in a simplified process flow and reduced investment.
Abstract:
The present invention provides a catalyst and a process for its preparation and its use in cracking heavy feedstocks. The catalyst comprises one or more zeolites having a controlled silica to alumina ratio and preferably treated with alkali in the presence of a matrix component selected from the group consisting of clays, synthetic matrix other than pillared clay, and mixtures thereof. The catalyst are particularly useful in treating heavy feedstock such as residues from oil sands processing.
Abstract:
The present invention provides a catalyst and a process for its preparation and its use in cracking heavy feedstocks. The catalyst comprises one or more zeolites having a controlled silica to alumina ratio and preferably treated with alkali in the presence of a matrix component selected from the group consisting of clays, synthetic matrix other than pillared clay, and mixtures thereof. The catalyst are particularly useful in treating heavy feedstock such as residues from oil sands processing.
Abstract:
The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; —a catalyst phase recycle means to recycle at least part of the catalyst phase from the separator unit to the reactor unit; which method includes: —adapting the catalyst phase recycle means by providing a means for acid injection and/or a means for halohydrocarbon injection into the catalyst recycle means. The invention further provides a method for the production of alkylate.
Abstract:
The present invention provides process for preparing an alkylate comprising contacting in a reaction zone a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate-comprising effluent, in which process: —solids are formed in the reaction zone; —a solids-comprising effluent comprising hydrocarbons and acidic ionic liquid is withdrawn from the reaction zone; and—at least part of the solids-comprising effluent is treated to remove at least part of the solids to obtain a solids-depleted effluent. The invention further provides a process for treating an acidic ionic liquid comprising at least 0.1 wt % of solids based on the total weight of the acidic ionic liquid, wherein at least part of the solids are removed.