Abstract:
A method of controlling a switching frequency of a device is disclosed, the method comprising estimating a rate of temperature ripples experienced by the device; determining the total number of temperature ripples expected over a required lifetime of the device, based on the rate of temperature ripples; determining and setting a first temperature ripple limit based on the total number of temperature ripples expected over the required lifetime of the device; and controlling a switching frequency of the device based on the first temperature ripple limit.
Abstract:
An energy bypass circuit for connection between an energy source and a capacitance has first and second relays, a switch, and a resistance. The relays are operable so as to have a first state in which the energy source is not connected to the capacitance, a second state in which the energy source is connected to the capacitance via the resistance, and a third state in which the energy source is connected to the capacitance not via the resistance. The switch is operable, when the relays are in the third state, to enable additional charge stored by the capacitance to discharge via the resistance.
Abstract:
The present invention relates to a method and tool for assisting alignment of one or more pin headers. In particular, the invention relates to a tool-assisted method of aiding alignment of one or more pin headers placed on a printed circuit board (PCB) prior to soldering, as well as to the tool itself.
Abstract:
There is provided a method and control system for controlling a switching device in a power converter according to a modulation scheme. The switching device couples a direct current (DC) source to provide an alternating current (AC) output at a particular switching frequency. The method comprises the step of, in each switching period, switching the switching device between active configurations providing a finite voltage at the output and inactive configurations providing a zero voltage at the output. The ratio between the total period of time in which the switching device is in an active configuration and the total period of time in which the switching device is in an inactive configuration is the same for each switching period and is determined according to the desired voltage at the AC output. However, in each switching period, there are at least two time periods in which the switching device is in an inactive configuration, and the ratio between those at least two time periods is changed in dependence on temperature associated with the switching device.
Abstract:
Conducting emission suppression in a power circuit for an electric motor comprises a negative temperature co-efficient resistor and capacitor connecting one of the power lines to ground. The NTC resistor is self-stabilizing so that changes in the load current are automatically compensated for.
Abstract:
A fail-safe interface circuit arranged to provide an inverter enable input to drive an inverter, the circuit being supplied by a first voltage and comprising: a charge pump comprising a charge pump input and a charge pump output, the charge pump output being coupled to a circuit output; and a pulsed input arranged to supply pulsed power to the charge pump input; wherein the charge pump output is arranged to produce a second voltage distinct from the first voltage only when the pulsed input is supplying pulsed power to the charge pump input, and wherein the circuit output is arranged to provide the inverter enable input when the second voltage is produced at the charge pump output.
Abstract:
A method of managing recovery from an event in an electrical circuit leading to a loss of control of an inverter in the electrical circuit is disclosed, the method comprising sampling a parameter of operation before the event, monitoring for occurrence of the event, calculating an estimated value of the parameter at a time after the event based on an extrapolation of the monitored parameter and controlling the inverter using the estimated value of the parameter.
Abstract:
A sealing element (1) comprising, in cross-section, a body (7a) and a first sealing part (8a).The first sealing part (8a) providing a sealing face (12a), the first sealing part being connected to and angularly and resiliently displaceable relative to a first surface of the body (7a).
Abstract:
The present disclosure relates to a plate for use with a heatsink. The plate is adapted to engage with the heatsink and a fan subassembly, and comprises a first substantially planar section which is adapted to engage with the heatsink and a second substantially planar section which is adapted to engage with the fan subassembly.
Abstract:
A network communication method is provided, said network comprising first and second nodes. The method comprises: transmitting a message from the first node to the second node, wherein the message comprises a data content portion and an identifying portion, wherein said identifying portion includes a first unique identifier corresponding to a time source which controls a time value at the first node; receiving the transmitted message at the second node; comparing the first unique identifier to a second unique identifier, wherein said second unique identifier corresponds to a time source which controls a time value at the second node; and if the result of said comparison is positive, accepting the message for processing at the second node.