Abstract:
A diagnostic system and method for diagnosing the performance of a particulate matter (PM) filter of an exhaust system each involve receiving, by a controller from at least one sensor, a gas component measurement of exhaust gas flowing through the exhaust system and the PM filter. The controller calculates a conversion efficiency of the gas component by the PM filter and compares the calculated conversion efficiency to a predetermined conversion efficiency threshold indicative of an expected conversion efficiency of a flow-through catalyst. The controller then determines whether the PM filter is cracked or damaged based on the comparison between the calculated conversion efficiency and the predetermined conversion efficiency threshold.
Abstract:
A diagnostic system and method for diagnosing the performance of a particulate matter (PM) filter of an exhaust system each involve receiving, by a controller from at least one sensor, a gas component measurement of exhaust gas flowing through the exhaust system and the PM filter. The controller calculates a conversion efficiency of the gas component by the PM filter and compares the calculated conversion efficiency to a predetermined conversion efficiency threshold indicative of an expected conversion efficiency of a flow-through catalyst. The controller then determines whether the PM filter is cracked or damaged based on the comparison between the calculated conversion efficiency and the predetermined conversion efficiency threshold.
Abstract:
A system and method for utilizing fuel as an on-board reductant for selective catalytic reduction of NOx is provided and includes a controller for controlling an engine to produce a lean first exhaust stream and a rich second exhaust stream that are received in respective first and second passageways of a dual path aftertreatment system. The rich second exhaust stream reacts with NOx stored in a NOx storage and reduction catalyst of the second passageway to regenerate this catalyst and generate ammonia. The first exhaust stream and the second exhaust stream having the generated ammonia are combined in a downstream common passageway to form a combined lean exhaust gas stream where the ammonia carried therein is stored or used by an SCR catalyst of the common passageway for NOx reduction. The engine is subsequently controlled to produce a rich first exhaust stream and a lean second exhaust stream.
Abstract:
A method and apparatus for reducing the percentage of nitrogen dioxide and nitrogen monoxide in an exhaust gas stream of an internal combustion engine, comprising the steps of injecting a hydrocarbon compound and optionally hydrogen into the exhaust gas stream; passing the exhaust gas through a first catalyst for selective reduction of a portion of the nitrogen oxides to nitrogen, ammonia, and N-containing species; passing the exhaust gas through a second catalyst for selective reduction of a portion of the nitrogen oxides with ammonia to molecular nitrogen; sensing ammonia concentration in the exhaust gas stream after passage through either or both of the first and second catalysts; and controlling by a controller in a feedback loop the injecting to an amount of hydrocarbon that will produce a predetermined concentration of ammonia and nitrogen oxides at the sensor that will lead to high NOx conversion.
Abstract:
A system and method for utilizing fuel as an on-board reductant for selective catalytic reduction of NOx is provided and includes a controller for controlling an engine to produce a lean first exhaust stream and a rich second exhaust stream that are received in respective first and second passageways of a dual path aftertreatment system. The rich second exhaust stream reacts with NOx stored in a NOx storage and reduction catalyst of the second passageway to regenerate this catalyst and generate ammonia. The first exhaust stream and the second exhaust stream having the generated ammonia are combined in a downstream common passageway to form a combined lean exhaust gas stream where the ammonia carried therein is stored or used by an SCR catalyst of the common passageway for NOx reduction. The engine is subsequently controlled to produce a rich first exhaust stream and a lean second exhaust stream.
Abstract:
A method and apparatus for reducing the percentage of nitrogen dioxide and nitrogen monoxide in an exhaust gas stream of an internal combustion engine, comprising the steps of injecting a hydrocarbon compound and optionally hydrogen into the exhaust gas stream; passing the exhaust gas through a first catalyst for selective reduction of a portion of the nitrogen oxides to nitrogen, ammonia, and N-containing species; passing the exhaust gas through a second catalyst for selective reduction of a portion of the nitrogen oxides with ammonia to molecular nitrogen; sensing ammonia concentration in the exhaust gas stream after passage through either or both of the first and second catalysts; and controlling by a controller in a feedback loop the injecting to an amount of hydrocarbon that will produce a predetermined concentration of ammonia and nitrogen oxides at the sensor that will lead to high NOx conversion.