Abstract:
An exhaust aftertreatment system may include a reductant tank, a gaseous ammonia source, an injector, first conduit and a second conduit. The injector may receive the liquid reductant from the reductant tank and the gaseous ammonia from the gaseous ammonia source and inject the liquid reductant into a stream of exhaust gas in a first mode, inject the gaseous ammonia into the stream of exhaust gas in a second mode, and both the liquid reductant and the gaseous ammonia into the stream of exhaust gas in a third mode. The first conduit may communicate liquid reductant from the reductant tank to the injector. The second conduit may communicate gaseous ammonia from the gaseous ammonia source to the injector.
Abstract:
A method for operating an exhaust gas purification system of an internal combustion engine, which can be operated in a lean operating mode and in a rich operating mode, is disclosed. The exhaust gas purification system has, arranged one after the other in the direction of flow of the exhaust gas, an ammonia-forming catalyst, a first exhaust gas sensor, an ammonia-SCR catalyst, a nitrogen oxide storage catalyst and a second exhaust gas sensor. Exhaust gas sensors emit a first signal correlating with the nitrogen oxide content of the exhaust gas and a second signal correlating with the lambda value of the exhaust gas. In diagnostic operation, the ammonia storage capacity of the ammonia-SCR catalyst and the oxygen and optionally the nitrogen oxide storage capacity of the nitrogen oxide storage catalyst can be determined by analyzing the signals of the first and second exhaust gas sensors.
Abstract:
A system and method for utilizing fuel as an on-board reductant for selective catalytic reduction of NOx is provided and includes a controller for controlling an engine to produce a lean first exhaust stream and a rich second exhaust stream that are received in respective first and second passageways of a dual path aftertreatment system. The rich second exhaust stream reacts with NOx stored in a NOx storage and reduction catalyst of the second passageway to regenerate this catalyst and generate ammonia. The first exhaust stream and the second exhaust stream having the generated ammonia are combined in a downstream common passageway to form a combined lean exhaust gas stream where the ammonia carried therein is stored or used by an SCR catalyst of the common passageway for NOx reduction. The engine is subsequently controlled to produce a rich first exhaust stream and a lean second exhaust stream.
Abstract:
An exhaust gas system for an engine producing an exhaust gas includes an exhaust gas tube configured to receive the exhaust gas. A particulate filter is in fluid communication with the exhaust gas tube and configured to undergo thermal regeneration when the exhaust gas in the particulate filter is heated above a regeneration temperature. A generator unit is positioned downstream of the particulate filter and includes a first catalyst. A tank is configured to store a precursor material. The generator unit is configured to employ the precursor material and the heat generated for the thermal regeneration of the particulate filter to generate an ammonia gas from the precursor material. The system includes a controller having a processor and tangible, non-transitory memory on which is recorded instructions for executing a method of controlling generation of ammonia gas in the generator unit and injection of ammonia gas in the exhaust gas tube.
Abstract:
An object of the disclosure is to adjust the ammonia adsorption amount in an SCR catalyst supported on an SCR filter as close as possible to a target adsorption amount in an exhaust gas purification system including the SCR filter. In a system according to the disclosure, the quantity of ammonia supplied by an ammonia supplier is made smaller when a differential pressure change rate at the time when ammonia is supplied by the ammonia supplier is lower than a predetermined threshold than when the differential pressure change rate at the time when ammonia is supplied by the ammonia supplier is equal to or higher than the predetermined threshold. Moreover, when the differential pressure change rate is lower than the predetermined threshold, the change in the quantity of ammonia supplied by the ammonia supplier relative to the change in the filter PM deposition amount is kept equal to zero.
Abstract:
An exhaust gas recirculation (EGR) system for an internal combustion engine having dedicated EGR and operating at a lean air-fuel ratio. In such engines, one or more cylinders is operable as a dedicated EGR cylinder, such that all of the exhaust produced by the dedicated EGR cylinder(s) may be recirculated to the engine's main (non dedicated) cylinders. Because the engine is lean burn, its exhaust aftertreatment system has a NOx-reducing device. An EGR loop is configured to recirculate EGR from the dedicated EGR cylinder(s) to the engine's intake manifold. A diversion line connects the EGR loop to the exhaust aftertreatment system, thereby delivering EGR as syngas for the NOx-reducing device. The syngas is used either directly as a reductant or to a catalyst that reduces the syngas to ammonia for use as a reductant.
Abstract:
An aftertreatment system for treating exhaust gas discharged from a combustion engine, the aftertreatment system comprising a low temperature selective-catalytic-reduction catalyst, wherein the low-temperature selective-catalytic-reduction catalyst is a mixture of catalytic metals provided on a beta-zeolite support material, the mixture of catalytic metals being at least one mixture selected from Cu and Ce, Mn and Ce, Mn and Fe, Cu and W, Mn and W, and Ce and W.
Abstract:
A method for treating exhaust gas condensates of an internal combustion engine, in which the exhaust gas condensates containing nitrogen oxides are delivered to an exhaust gas recirculation system and are cooled therein. The nitrogen oxides of the cooled exhaust gas condensates are converted to ammonia through electrolysis.
Abstract:
A powertrain includes an internal combustion engine with multiple cylinders and an aftertreatment system having a selective catalytic reduction device utilizing ammonia as a reductant. An ammonia generation cycle includes operating some portion of the cylinders at an air/fuel ratio conducive to producing molecular hydrogen and some portion of the cylinders at an air/fuel ratio conducive to producing NOx. An ammonia generation catalyst is utilized between the engine and the selective catalytic reduction device to produce ammonia.
Abstract:
A method for treating exhaust gas condensates of an internal combustion engine, in which the exhaust gas condensates containing nitrogen oxides are delivered to an exhaust gas recirculation system and are cooled therein. The nitrogen oxides of the cooled exhaust gas condensates are converted to ammonia through electrolysis.