Abstract:
The present invention provides instrumentation and associated methods for suture-based soft tissue repair. The disclosed instrument is configured to pass suture through tissue, relocate the instrument, and retrieve the suture, thereby creating a stitch. These steps can be repeated any number of times to create multiple stitches through the tissue.
Abstract:
An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
Abstract:
The present invention relates to a clamp, and, more particularly, to a clamp for securing the position of a bone anchor with respect to a longitudinal rod, preferably for use in the spine. The clamp may include a housing, a rod clamping assembly, and a bone anchor clamping assembly. The clamp preferably enables the longitudinal axis of the rod to be offset or laterally displaced from the longitudinal axis of the bone anchor. The rod clamping assembly and the bone anchor clamping assembly are preferably moveably coupled to the housing in order to provide increased flexibility to better accommodate the location and geometry of the longitudinal rod and to better accommodate bone positioning.
Abstract:
A bi-directional suture passing instrument configured to approach soft tissues perpendicularly, enables safer and more efficient surgical repairs and minimally invasive techniques to be employed, useful in areas such as annulus repair, meniscal repair, shoulder arthroscopy, hernia repair, laproscopic repair, and wound closure.
Abstract:
The present invention relates to a surgical method or procedure for securing a prosthesis to bone. More particularly, the present invention relates to (i) a surgical method or procedure for securing a low load bearing prosthesis such as, for example, an adhesion barrier, to a patient's bone, (ii) a tack or drive screw for securing the low load bearing prosthesis and (iii) associated instrumentation for driving the tack or drive screw into the patient's bone.
Abstract:
The present invention relates to a clamp, and, more particularly, to a clamp for securing the position of a bone anchor with respect to a longitudinal rod, preferably for use in the spine. The clamp may include a housing, a rod clamping assembly, and a bone anchor clamping assembly. The clamp preferably enables the longitudinal axis of the rod to be offset or laterally displaced from the longitudinal axis of the bone anchor. The rod clamping assembly and the bone anchor clamping assembly are preferably moveably coupled to the housing in order to provide increased flexibility to better accommodate the location and geometry of the longitudinal rod and to better accommodate bone positioning.
Abstract:
An anchor assembly can include at least one anchor member, such as a pair of anchor members that are configured to be implanted in a target anatomical location in a first configuration, and can subsequently be actuated to an expanded configuration that secures the anchor members in the target anatomy. The anchor assembly can further include a connector member that attaches the pair of anchor members together across a gap so as to approximate the anatomical defect.
Abstract:
An anchor assembly can include at least one anchor member, such as a pair of anchor members that are configured to be implanted in a target anatomical location in a first configuration, and can subsequently be actuated to an expanded configuration that secures the anchor members in the target anatomy. The anchor assembly can further include a connector member configured as a stitch lock that attaches the pair of anchor members together across a gap so as to approximate the anatomical defect.
Abstract:
An insertion instrument is configured to eject a pair of anchor bodies across an anatomical gap so as to approximate the gap. The insertion instrument can include a single cannula that retains the pair of anchor bodies in a stacked relationship, or a pair of adjacent cannulas that each retain respective anchor bodies. The insertion instrument can be actuated so as to eject the anchor bodies into respective target anatomical locations.
Abstract:
An anchor assembly can include at least one anchor member, such as a pair of anchor members that are configured to be implanted in a target anatomical location in a first configuration, and can subsequently be actuated to an expanded configuration that secures the anchor members in the target anatomy. The anchor assembly can further include a connector member configured as a stitch lock that attaches the pair of anchor members together across a gap so as to approximate the anatomical defect.