摘要:
A method for forming a metal pattern in a semiconductor device which is capable of reducing contact resistivity with an interconnection contact. The method includes forming a tungsten interconnection contact passing through a lower insulating layer on a semiconductor substrate, forming an upper insulating layer covering the interconnection contact, and forming a groove having the same line width as a damascene trench on the upper insulating layer. The method also includes forming a mask spacer on a sidewall of the groove, forming the damascene trench having an inclined bottom profile for exposing a top surface and a portion of a sidewall of the interconnection contact, and forming a metal pattern with which the damascene trench is filled, the metal pattern electrically connected to the interconnection contact.
摘要:
The CD uniformity of a damascene pattern and the reliability of interconnection lines may be enhanced when a semiconductor device is manufactured by a method including: forming a first insulating layer on a semiconductor substrate, the first insulating layer having a contact hole partially exposing the substrate; forming a photoresist layer filling the contact hole; removing the photoresist layer such that the first insulating layer is exposed and a recess is formed in the contact hole; reducing, removing or substantially eliminating the recess by removing an upper portion of the first insulating layer; forming a second insulating layer having a trench exposing the photoresist layer and a portion of the first insulating layer adjacent thereto; and removing the remaining photoresist layer.
摘要:
A method for forming a metal pattern in a semiconductor device which is capable of reducing contact resistivity with an interconnection contact. The method includes forming a tungsten interconnection contact passing through a lower insulating layer on a semiconductor substrate, forming an upper insulating layer covering the interconnection contact, and forming a groove having the same line width as a damascene trench on the upper insulating layer. The method also includes forming a mask spacer on a sidewall of the groove, forming the damascene trench having an inclined bottom profile for exposing a top surface and a portion of a sidewall of the interconnection contact, and forming a metal pattern with which the damascene trench is filled, the metal pattern electrically connected to the interconnection contact.
摘要:
Methods of preventing oxidation of a copper interconnect of a semiconductor device are disclosed. An example method forms a lower copper interconnect on a substrate having at least one predetermined structure, deposits a nitride layer on the lower copper interconnect and on the substrate, and sequentially depositing a first insulating layer, an etch-stop layer, and a second insulating layer on the nitride layer. The example method also forms a trench and a via hole through the second insulating layer and the first insulating layer by using a dual damascene process, etches the nitride layer so as to expose some portion of the lower copper interconnect, and supplies combining gas onto the exposed portion of the lower copper interconnect.
摘要:
The CD uniformity of a damascene pattern and the reliability of interconnection lines may be enhanced when a semiconductor device is manufactured by a method including: forming a first insulating layer on a semiconductor substrate, the first insulating layer having a contact hole partially exposing the substrate; forming a photoresist layer filling the contact hole; removing the photoresist layer such that the first insulating layer is exposed and a recess is formed in the contact hole; reducing, removing or substantially eliminating the recess by removing an upper portion of the first insulating layer; forming a second insulating layer having a trench exposing the photoresist layer and a portion of the first insulating layer adjacent thereto; and removing the remaining photoresist layer.
摘要:
The present invention relates to a fabrication method of a semiconductor device using EPD system, which enables uniform hole etching regardless of changes of etch rates of etching chemical and thickness of interlayer insulating layer after CMP, and the fabrication method comprises: forming a nitride layer on an interlayer insulating layer; forming a photoresist layer on the nitride layer, and exposing and developing the photoresist layer to form a photoresist pattern; etching the nitride layer using the photoresist pattern as a mask and contiguously etching the photoresist pattern and the interlayer insulating layer together; setting etch stop point as the point that the photoresist pattern is removed by etching and thus the nitride layer is exposed.
摘要:
The present invention relates to a bonding pad of a semiconductor device and a formation method thereof, and the object of the present invention is to prevent bonding defects by enlarging contact area between a bonding pad and a soldering material and to prevent moisture from penetrating into an oxide layer. The present invention provides a bonding pad of a semiconductor device comprising: a barrier metal layer formed on a structure of a semiconductor substrate; a metal wire layer formed on the barrier metal layer; a passivation metal layer formed on the metal wire layer and removed partly to expose a portion of the upper surface of the metal wire layer; an insulating layer which is formed on the passivation metal layer and has a contact hole exposing the metal wire layer via the portion that the passivation metal layer is removed; and an adhesive metal layer formed on the inner surface of the contact hole.
摘要:
Semiconductor device fabrication methods are disclosed. According to one example, a method includes forming a pad oxide layer and a nitride layer sequentially on a silicon substrate, and forming a photoresist pattern for trench formation on the nitride layer; etching the nitride layer and the pad oxide layer using the photoresist pattern as a mask while etching the silicon substrate to form a trench using the nitride layer as an etch stopper; filling the trench by depositing an oxide layer for trench gap filling on entire surface of the silicon substrate; and performing planarization which makes the gap filling oxide exist only in the trench.