Abstract:
An electric motor including a stator, a rotor, and a housing adapted to support the stator and the rotor is provided. The stator includes a stator core, a first and second lamination stack, a flux tube extending therethrough, and windings on the stator core. The rotor includes a hub having an inner surface, a magnet coupled to the hub inner surface, and a shaft received in the stator core for rotation of the rotor relative to the stator about the longitudinal axis of the shaft.
Abstract:
A method for varying motor output using magnets of different fluxes includes manufacturing standardized parts, ascertaining desired motor output, selecting from a group of interchangeable magnets to provide the desired output, and assembling a motor with the selected magnets and standardized parts such that the desired output is provided. Additionally, a motor kit including a rotor configured to accommodate magnets of varying residual induction values and lengths, a stator configured to operate with the rotor, and a plurality of interchangeable magnets with different residual induction values and lengths.
Abstract:
An energy efficient low-power integral electronically commutated fan motor and control circuit assembly mounted on a circuit board for use in refrigerators utilizing a Hall sensor to provide positional control signals for sequential energization of the windings with the Hall sensor energization being pulsed, and the motor stator windings energized only during a portion of the period, when rotational torque produced by the energization is greatest in order to reduce the power input to the assembly. Integrally molded multi-function components including the coil bobbin, ground pin, Hall sensor holder, motor bearing oil well covers, and assembly housing provide positioning, support, and securing assistance along with electrical and magnetic operative connections and positioning. A capacitively coupled bridge power supply is provided to further reduce power consumption, and the motor is protected under fault and stall conditions by a current limiting circuit and a timed retry circuit, and the rotor and stator are designed for adequate starting torque in a refrigerator. Power is supplied to the motor windings through a voltage dropping capacitor connected in series therewith.
Abstract:
An energy efficient low-power integral electronically commutated fan motor and control circuit assembly mounted on a circuit board for use in refrigerators utilizing a Hall sensor to provide positional control signals for sequential energization of the windings with the Hall sensor energization being pulsed, and the motor stator windings energized only during a portion of the period, when rotational torque produced by the energization is greatest in order to reduce the power input to the assembly. Integrally molded multi-function components including the coil bobbin, ground pin, Hall sensor holder, motor bearing oil well covers, and assembly housing provide positioning, support, and securing assistance along with electrical and magnetic operative connections and positioning. A capacitively coupled bridge power supply is provided to further reduce power consumption, and the motor is protected under fault and stall conditions by a current limiting circuit and a timed retry circuit, and the rotor and stator are designed for adequate starting torque in a refrigerator. Power is supplied to the motor windings through a voltage dropping capacitor connected in series therewith.
Abstract:
A capacitively powered motor having a power switching circuit adapted to be connected between a power source and its winding for selectively energizing the winding to generate a magnetic field which causes a rotating assembly to rotate. A position sensing circuit provides a position signal representative of the position of the rotating assembly and a commutating circuit controls the power switching circuit to commutate the power switching circuit at a commutating angle and at a substantially constant duty cycle to achieve a desired rotating speed of the rotating assembly. The commutating circuit varies the commutating angle in response to the position signal to maintain the substantially constant rotating speed of the rotating assembly. As result, the efficiency of the motor is varied to maintain the substantially constant rotating speed.
Abstract:
A single phase permanent magnet motor includes a rotor, a stator, and a quadrature axis winding positioned out-of-phase from a main winding of the stator for generating an output signal representative of rotor angular position. An integrator can be coupled to the quadrature axis winding for phase retarding the output signal, and a comparator can be coupled to the integrator for detecting zero crossings of the phase retarded output signal to provide a commutation signal. The quadrature axis winding can be positioned about ninety electrical degrees out-of-phase from the main winding of the stator, and the integrator can be adapted to phase retard the output signal by a number of degrees which decreases as a speed of the motor increases. At low speeds the phase retard is preferably at about ninety degrees so that the phase retarded signal becomes in-phase with the main stator winding back EMF voltage. The motor may further include a rectifier coupled to the quadrature axis winding for rectifying the output signal, and a lowpass filter for filtering the rectified output signal to provide a signal proportional to velocity. Also the single phase motor is commutated for maximum torque production.
Abstract:
Control circuit for an electronically commutated motor which has a rotatable assembly and further has a stationary assembly with a plurality of winding stages having terminals for energization, and switches for applying a voltage to one or more of the terminals of the winding stages at a time and commutating the winding stages in a preselected sequence to rotate the rotatable assembly. A preselected sequence of winding stages are left correspondingly unpowered so that a plurality of the winding stages are unpowered at some time. The winding stages generate back emf signals and also couple electrical signals from each energized winding stage to the unpowered winding stages which signals can interfere with detection of back emf for position sensing purposes. The control circuit includes a first circuit for selecting at least two of the unpowered winding stages which have electrical signals coupled to them that have a predetermined relationship in polarity and magnitude. A second circuit produces an electrical output from the voltages on the winding stage terminals of the winding stages selected, so that the electrical signals coupled from each energized winding stage are substantially canceled when they have the predetermined relationship while the back emf is preserved for position sensing substantially free from interference from the electrical signals that are coupled from each energized winding stage to the unpowered winding stages. Other control circuits, electronically commutated motor systems and methods of control and operation are also disclosed.
Abstract:
A laundering apparatus includes a laundry machine having a spin tub and an agitator, and an electronically commutated motor is drivingly associated with the tub and agitator through a transmission. A system controls the energization of the electronically commutated motor to effect the laundering operations of the tub and the agitator in the laundry machine.A method of operating a laundry machine, a control system for an electronically commutated motor, and a method of operating an electronically commutated motor are also disclosed.
Abstract:
A refrigeration system is disclosed as comprising a compressor driven by an electronically commutated D.C. motor for circulating a suitable coolant through a condenser and then an evaporator disposed within a chamber or compartment to be cooled. The system is particularly adapted for use as an air conditioning system for automobiles and recreational vehicles, as portable refrigerating apparatus in recreational vehicles, and refrigerating apparatus for trucks or other transport vehicles. In such applications, a power source such as a battery, alternator, or generator (or rectified alternating current) serves to energize the motor. The motor may be operated by an electronic commutating circuit responsive to the position of the rotor of the D.C. motor for efficiently commutating the energizing signals applied to the stator windings of the brushless D.C. motor. The level of energization is set in accordance with the desired temperature to be maintained by the refrigeration system, whereby the D.C. motor is energized to drive the compressor at a selected speed corresponding to the desired temperature. The degree of stator energization may be controlled by: 1) regulating the output of the power source, or 2) regulating directly the commutating circuit to control the current signals applied to the stator windings.
Abstract:
A brushless DC motor is constructed with photosensitive devices for detecting rotor shaft position. Arcuate permanent magnets on the rotor provide a DC flux field while distributed stator windings, each spanning a fixed number of slots in the armature assembly, provide mutually perpendicular magnetic fields. A logic circuit comprising NOR gates and transistor switches and drivers activated in response to signals from the shaft position sensors are utilized to control current switching in the stator windings of the motor. A light interrupting shutter mounted to the rotor cooperates with the light sensitive devices which are mounted to a supporting bracket fixed to the stator assembly in a manner to selectively preset advancement of commutation of the stator windings.