Abstract:
A battery includes a number of single cells interconnected in series and/or in parallel, the electrical poles of which for the electrical interconnection are connected to one another in a positive-fit and/or integrally bonded manner, directly or by means of cell connectors. The battery also includes a battery monitoring unit connected to the electrical poles and/or to the cell connectors in a positive-fit and/or integrally bonded manner. The electrical poles of the single cells, the cell connectors, and/or the battery monitoring unit have redundant contact areas for the positive-fit and/or integrally bonded connection. In each case only one of the contact areas which are redundant with one another is connected in a positive-fit and/or integrally bonded manner, and the further contact area(s) is/are not connected.
Abstract:
A single cell for a battery includes an electrode stack situated within a cell housing formed from two electrically conductive shell-shaped housing side walls situated essentially in parallel opposite one another, having a shell flange extending around the edges. The shell flanges are joined to one another to form a flange area and are electrically insulated from one another. Pole contact tabs of the electrode stack are connected electrically connected to the housing side walls. At least one of the housing side walls has a section protruding, at least in parts, beyond the flange area of at least one housing edge of the cell housing. The protruding section of the housing side wall is angled in the direction of a cell interior and in the direction of a shell base of the housing side wall, and in the angled state protrudes beyond the shell base by a predetermined amount.
Abstract:
A single cell having a casing formed from a first casing side part, a second casing side part and a casing frame, in which casing an electrolyte and an electrochemically active electrode foil unit are arranged, wherein the casing comprises an overpressure protection. The first casing side part includes a casing side part segment going at least sectionally over a length of the single cell, which casing side part segment is angled down in relation to the first casing side part in the direction of the cell interior and in which the overpressure protection is arranged and a venting opening is incorporated into the casing frame in a region of the overpressure protection.
Abstract:
A battery having a cooling apparatus for temperature control of the battery is provided. The battery has a plurality of individual cells connected in parallel and/or in series with one another using cell connectors. The individual cells are attached to the cooling apparatus such that they can be prestressed by means of the cell connectors.
Abstract:
An individual cell for a battery comprises an electrode stack disposed within a cell housing and a method for the production thereof. The individual electrodes, preferably electrode foils, are electrically connected to lead vanes, and at least electrodes of different polarity are separated and insulated from each other by a separator preferably a separator foil. Lead vanes of the same polarity are electrically connected to each other to form a pole. The lead vanes of a pole are electrically compressed with each other and/or welded to each other.
Abstract:
The invention relates to a battery (B) with a plurality of flat cells (1) forming a cell assembly (Z) that are arranged one after the other and are electrically interconnected in series and/or in parallel, wherein at least one electrical component is integrated into the cell assembly (Z), in that it is arranged at least partially between two flat cells (1) of the cell assembly (Z) or at one end of the cell assembly (Z) and is connected to the cell assembly (Z) in a form-fit or force-fit manner.
Abstract:
A battery with a case and a heat-conducting plate for adjusting the temperature of the battery has several individual cells that are connected in parallel or in series, and are thermally coupled to the heat-conducting plate. The battery is formed of at least two cell stacks that are arranged one after the other. The heat-conducting plate (8) is arranged between the cell stacks, so that the effective heat-conducting cross section of the heat-conducting plate is utilized on both sides.
Abstract:
The invention relates to a single cell (1) for a battery having electrodes (6), preferably electrode foils, which are arranged within a cell housing (2) wherein a current output lug (9) is arranged electrically conductively on each electrode (6), wherein at least electrodes (6) of opposite polarity are separated in an electrically isolated manner from one another by a separator (8), preferably a separator film. Each pole (10) is electrically conductively connected to an electrically conductive area on an outer face (4) of the cell housing (2), wherein the relevant two areas of different polarity are electrically isolated from one another. The pole lugs (3) which are arranged on the relevant areas project in a free-standing manner out of the cell housing (2).
Abstract:
The invention relates to a vehicle battery, comprising a housing, a cell assembly arranged in the housing made up of battery cells, and a plate arranged in the electrical connector region of the cells for electrical connection of the cells. The battery also has support elements arranged inside the housing which, in the case of a deformation of the housing toward the plate by a deformation force acting on the housing, support the loading forces acting on the plate due to the deformation of the housing.
Abstract:
A method and an arrangement are provided for purifying gases which are fed to a fuel cell for operation. A filter system, which is designed to separate out particulates and polluting gases, is arranged in a feed passage for the respective gas.