Abstract:
A flame-retarded thermoplastic composition including a graft copolymer containing polyamide blocks and composed of a polyolefin backbone and on average at least one polyamide graft, in which the grafts are attached to the backbone by the residues of an unsaturated monomer (X) having a function capable of reacting with a polyamide, the residues of the unsaturated monomer (X) are attached to the backbone by grafting or copolymerization from its double bond, wherein the composition includes: —between 60% and 70% by weight of the graft copolymer containing polyamide blocks, —between 22% and 28% by weight of poly(pentabromobenzyl acrylate), —between 4% and 8% by weight of a synergistic flame retardant chosen from antimony trioxide, derivatives of tin, of molybdenum and/or bismuth and also boron and zinc oxides, calcium borates, calcium sulphate and/or zinc stannate, between 0.5% and 5% by weight of organophilic treated clay.
Abstract:
The present invention relates to a photovoltaic module comprising as an encapsulant a composition comprising at least one polyacrylate- or polymethacrylate-type block copolymer with the general formula B-(A)n, n being a natural integer no lower than one, preferably 1 to 8, the block A being selected from among methacrylates having a Tg higher than 0° C., the block B being a polyacrylate or a polymethacrylate having a Tg lower than 0° C., the block B being at least 50 wt % of the total weight of the block copolymer.
Abstract:
The mixture of the invention contains, for 100 parts in weight of (A)+(B): (A) 10 to 90 parts in weight of at least one non-nanostructured olefinic thermoplastic polymer; (B) 90 to 10 parts in weight of a formulation of at least one elastomer having unsaturated double bonds and capable of reacting with a cross-linking or vulcanization agent, said formulation containing a crosslinking or vulcanization system of said elastomer(s), at least one plasticizer, and the standard additives present in elastomer formulations; (C) up to 100 parts in weight, relative to (A)+(B), of at least one copolymer grafted with polyamide blocks, said copolymer comprising a polyolefin trunk and at least 1.3 polyamide grafts on said trunk in average, and having a nanostructured organization, wherein said grafts are attached to the trunk by the rest of an unsaturated monomer (X) having a function capable of reacting with a polyamide with an amine end; and rest of said unsaturated monomer (X) being attached on the trunk by grafting or copolymerization from its double bond thereof, and wherein (A) and (B) in the mixture can already have been combined together by the crosslinking or vulcanization dynamic method in order to provide a crosslinked or vulcanized thermoplastic composition.
Abstract:
A transparent, fireproof thermoplastic composition which is free from halogen compounds and includes a polyamide-block graft copolymer formed by a polyolefin backbone and, on average, at least one polyamide graft. The grafts are attached to the backbone by the radicals of an unsaturated monomer (X) that has a function capable of reacting with a polyamide, and the radicals of the unsaturated monomer (X) are attached to the backbone by grafting or co-polymerisation from the double bond thereof. The composition includes, as a weight percentage of the total composition: 90 to 99 wt % of the polyamide-block graft copolymer, and 1 to 10 wt % of metal salts of phosphoric acid.
Abstract:
The mixture of the invention contains, for 100 parts by weight: (A) 10 to 90 parts in weight of at least one copolymer grafted to polyamide blocks, said copolymer comprising a polyolefin trunk and at least 1.3 polyamide grafts on said trunk in average, and having a nanostructured organization, wherein said grafts are attached to the trunk by the rest of an unsaturated monomer (X) having a function capable of reacting with a polyamide with an amine end; the rest of said monomer (X) being attached on the trunk by grafting or copolymerization from its double bond thereof, (A) optionally including at least one non-grafted polyolefin in a proportion such that the nano-structured organization of the compound (A) is preserved; and (B) 90 to 10 parts in weight of a formulation of at least one elastomer having unsaturated double bonds and capable of reacting with a cross-linking or vulcanization agent, said formulation containing a crosslinking or vulcanization system of said elastomer(s), at least one plasticizer and the standard additives present in elastomer formulations.
Abstract:
The invention relates to a multilayer structure that includes: a layer of a composition including a fluorinated polymer and a zinc oxide (ZnO), said ZnO being present in said composition in the form of particles having a weight proportion of less than 1%, said ZnO particles having a size between 10 to 100 nm, and an adhesion promoter present in the body and/or surface of said layer; and at least one oxide layer (MOx) selected from among silicon oxide and aluminum oxide, and having a thickness of from 20 to 200 nm. Aid structure has excellent properties of transparency within the visible range, excellent properties of opacity to UV rays, as well as good mechanical resistance and aging resistance while having excellent moisture barrier properties. Said structure can thus be advantageously used in the front surface of photovoltaic panels or fro protecting organic light-emitting diodes.
Abstract:
The present invention relates to a thermoplastic composition including a polyamide graft polymer including a polyolefin backbone containing a residue of at least one unsaturated monomer having reacted with at least one polyamide graft. The invention also relates to structures, particularly multilayer structures, including said composition. One of the preferred structures of the present invention is a photovoltaic module including said composition. The composition according to the invention can advantageously be used as a binder or encapsulant. It is also used in solar panels and laminated glass.
Abstract:
An encapsulant for a photovoltaic module, intended to coat a photovoltaic cell, including at least two adjacent thermoplastic layers together forming a core-skin assembly: the skin layer is a polyamide graft polymer including a polyolefin backbone representing 50 wt % to 95 wt % of the polyamide graft polymer, containing a residue of at least one unsaturated monomer (X) and at least one polyamide graft, representing 5 wt % to 50 wt % of said polyamide graft polymer; the polyolefin backbone and the polyamide graft of the skin layer are chosen so that the polyamide graft polymer has a flow temperature greater than or equal to 75° C. and less than or equal to 160° C., this flow temperature being defined as the highest temperature out of the melting temperature and the glass transition temperature of the polyamide graft and of the polyolefin backbone.
Abstract:
A double-layer thermoplastic film of a photovoltaic module, including two layers, one forms the encapsulator and the other forms the backsheet, wherein: a) the encapsulator is a layer including at least one polyolefin containing a polyethylene selected from a homopolymer of ethylene or a copolymer comprising at least 50 mol % of ethylene and at least one comonomer and between 0% and 100% of a polyamide grafted polymer comprising a polyolefin trunk that represents between 50 mass % and 95 mass % of the polyamide grafted polymer containing a radical of at least one unsaturated monomer (X) and at least one polyamide graft that represents between 5 mass % and 50 mass % of said polyamide grafted polymer; and b) the backsheet comprises a layer formed from a polyamide grafted polymer that is identical to that of the encapsulator except that it has a flow temperature higher than 160° C.
Abstract:
The present invention relates to a photovoltaic module comprising as an encapsulant a composition comprising at least one polyacrylate- or polymethacrylate-type block copolymer with the general formula B-(A)n, n being a natural integer no lower than one, preferably 1 to 8, the block A being selected from among methacrylates having a Tg higher than 0° C., the block B being a polyacrylate or a polymethacrylate having a Tg lower than 0° C., the block B being at least 50 wt % of the total weight of the block copolymer.