摘要:
A coating composition is provided, the starting materials of which comprise nano SiO2, film-forming substance, film-forming aid, accelerator, acid, and water. The composition has pH of 3-9. A passivated zinc-plated material is also provided. The zinc-plated material comprises zinc-plated substrate and passivated coat adhered to the surface of the zinc-plated substrate, wherein the passivated coat is formed by curing the coating composition. The coating composition can impart to the zinc-plated material excellent corrosion resistance, water resistance, high temperature resistance, surface conductivity, and adhesion to the zinc-plated substrate. Additionally, the coating composition contains no Cr6+, and satisfies the requirement of EU RoHS Directive.
摘要:
A coating composition is provided, the starting materials of which comprise nano SiO2, film-forming substance, film-forming aid, accelerator, acid, and water. The composition has pH of 3-9. A passivated zinc-plated material is also provided. The zinc-plated material comprises zinc-plated substrate and passivated coat adhered to the surface of the zinc-plated substrate, wherein the passivated coat is formed by curing the coating composition. The coating composition can impart to the zinc-plated material excellent corrosion resistance, water resistance, high temperature resistance, surface conductivity, and adhesion to the zinc-plated substrate. Additionally, the coating composition contains no Cr6+, and satisfies the requirement of EU RoHS Directive.
摘要:
A metal protective coating is provided, which is obtained by mixing homogeneously a raw mixture, which contains water soluble silicate, promoter, silane coupling agent, silicon oxide packing, water soluble film formation resin, and water; wherein, the promoter is at least one selected from the group consisting of methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxymethyl-hydroxyethyl cellulose, and their soluble salts; the silane coupling agent contains a first silane derivative shown in formula (1), wherein, R1, R2, and R3 are methoxyl or ethyoxyl respectively, and n is an integer with the range of 1-4. A hot-dip Zn metallic material and a hot-dip Al—Zn alloy metallic material are further provided. The protective film formed by the metal protective coating as provided has outstanding corrosion resistance, water resistance, thermal resistance, and fingerprint resistance properties.
摘要:
A metal protective coating is provided, which is obtained by mixing homogeneously a raw mixture, which contains water soluble silicate, promoter, silane coupling agent, silicon oxide packing, water soluble film formation resin, and water; wherein, the promoter is at least one selected from the group consisting of methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxymethyl-hydroxyethyl cellulose, and their soluble salts; the silane coupling agent contains a first silane derivative shown in formula (1), wherein, R1, R2, and R3 are methoxyl or ethyoxyl respectively, and n is an integer with the range of 1-4. A hot-dip Zn metallic material and a hot-dip Al—Zn alloy metallic material are further provided. The protective film formed by the metal protective coating as provided has outstanding corrosion resistance, water resistance, thermal resistance, and fingerprint resistance properties.
摘要:
A high carbon content and high strength heat-treated steel rail including by weight 0.80-1.20% carbon, 0.20-1.20% silicon, 0.20-1.60% manganese, 0.15-1.20% chromium, 0.01-0.20% vanadium, 0.002-0.050% titanium, less than or equal to 0.030% phosphorus, less than or equal to 0.030% sulfur, less than or equal to 0.010% aluminum, less than or equal to 0.0100% nitrogen, and iron. The steel rail has excellent wear resistance and plasticity and can satisfy the requirement for overloading. A method for producing the steal rail by heating a slab to a heating temperature, multi-pass rolling, and accelerated cooling, wherein a maximum heating temperature (° C.) of said slab is equal to 1,400 minus 100[% C], [% C] representing the carbon content (wt. %) of said slab multiplied by 100.
摘要:
A high carbon content and high strength heat-treated steel rail including by weight 0.80-1.20% carbon, 0.20-1.20% silicon, 0.20-1.60% manganese, 0.15-1.20% chromium, 0.01-0.20% vanadium, 0.002-0.050% titanium, less than or equal to 0.030% phosphorus, less than or equal to 0.030% sulfur, less than or equal to 0.010% aluminum, less than or equal to 0.0100% nitrogen, and iron. The steel rail has excellent wear resistance and plasticity and can satisfy the requirement for overloading. A method for producing the steal rail by heating a slab to a heating temperature, multi-pass rolling, and accelerated cooling, wherein a maximum heating temperature (° C.) of said slab is equal to 1,400 minus 100[% C], [% C] representing the carbon content (wt. %) of said slab multiplied by 100.
摘要:
The present discloses a steel rail for high speed and quasi-high speed railways and a manufacturing method thereof. The steel rail having a superior rolling contact fatigue property can be obtained by reducing content of carbon in conjunction with controlled cooling after rolling. The steel rail includes 0.40-0.64% by weight of C, 0.10-1.00% by weight of Si, 0.30-1.50% by weight of Mn, less than or equal to 0.025% by weight of P, less than or equal to 0.025% by weight of S, less than or equal to 0.005% by weight of Al, more than 0 and less than or equal to 0.05% by weight of a rare earth element, more than 0 and less than or equal to 0.20% by weight of at least one of V, Cr, and Ti, and a remainder of Fe and inevitable impurities. The steel rail manufactured according to the method of the present invention maintains the strength and hardness of the existing steel rail for the high speed railways, while enhancing the toughness, plasticity and yield strength, and an energy value required for initiating and expanding microcracks formed at the surface of the steel rail due to fatigue is increased, and thus under the same conditions, the rolling contact fatigue property of the steel rail can be improved, thereby finally improving the service lifetime and the transportation safety of the steel rail.