Abstract:
In an embodiment a method for position determination of an object (25) in a spatial area (28) is provided in which the object (25) is illuminated with at least one light beam (22, 27). The light beam (22, 27) does not cover the complete spatial area (28) and is guided into a part of the spatial area in which the object (25) is present depending on the position of the object (25). In another aspect a method for measuring a surface is provided.
Abstract:
A projector, having an illumination modulator having multiple illumination pixels a projection lens projecting the light being modulated in a pixel-individual manner onto an image modulator having multiple image pixels to generate the image. A controller generates illumination control data for the illumination modulator and generates image control data for the image modulator. The illumination control data has either an on-value or an off-value The illumination control data (MS) is generated such that the on-value for each illumination pixel is associated with at least one image pixel that is to represent a brightness value within the image and an off-value for all other illumination pixels, with the exception that the illumination control data for at least one of the other illumination pixels that is at a distance by not more than one predetermined pixel number, has an on-value.
Abstract:
The invention is directed to an optical scanning device with two scanning mirrors and with optical elements for imaging the two scanning mirrors one onto the other by means of an intermediate image. A control unit is provided for supplying drives which are coupled to the scanning mirrors with excitation voltages or excitation currents to initiate deflection angles ranging from zero to the maximum possible deflection angle for the two scanning mirrors. At least one of the scanning mirrors is designed for biaxial scanning, and the control unit is designed to vary the driving of the two scanning mirrors with respect to biaxial or uniaxial deflection of the beam bundle electively in quasistatic or resonant mode of operation. At least one of the two scanning mirrors is preferably designed as MEMS assembly.
Abstract:
An optical observation instrument has two optical transmission channels for transmitting two partial ray bundles (9A, 9B). The optical observation instrument has a main objective (1) common to the optical transmission channels, an electronic image sensor (7) for sequentially recording the partial ray bundles (9A, 9B), an intermediate imaging optical system (3) between the main objective (1) and the image sensor (7) and common to the optical transmission channels, and a tilting mirror matrix (5) between the main objective (1) and the image sensor (7). The intermediate imaging optical system (3) is arranged so that the respective partial ray bundle (9A, 9B) is deflected toward the image sensor (7) and passes the intermediate imaging optical system (3) both on the way from the main objective (1) to the tilting mirror matrix (5) and on the way from the tilting mirror matrix (5) to the image sensor (7).
Abstract:
An imaging includes an image acquisition module which has an image sensor and a first lens system, having a focal plane, for imaging an object onto the image sensor, a display module which displays the image captured by means of the image acquisition module such that a user can perceive it with one eye, and a control unit. A measuring module is provided to the control unit for measuring the accommodation state (B1(t)) of the eye of the user. The control unit adjusts the position of the focal plane of the first lens system on the basis of the measured accommodation state (B1(t)) and, at the same time, adjusts displaying of the image by means of the display module on the basis of the measured accommodation state (B1(t)) such that the user can perceive the displayed image in sharp definition with his eye having the measured accommodation state (B1(t)).
Abstract:
A method and device are provided for time-sequential recording of three-dimensional images each of which has at least one first and one second partial image. The device has a sensor (13) with pixels (16) subdivided into two mutually different pixel groups. An imaging optical unit has a switchable changeover device (9) that images the partial images of the three-dimensional image time-sequentially onto the sensor (13). A control unit is connected to the sensor (13) and the changeover device (9) to control the reading of the sensor (13) and the switching states of the changeover device (9) so that the changeover device (9), during the imaging of the partial images onto the sensor (13) assumes at least one switching state in which excerpts of different partial images are fed to the different pixel groups of the sensor (13).
Abstract:
Laser scanning microscope or spectral detector having a detection beam path and first imaging optics which image spectrally dispersed sample light in a Fourier plane such that the individual spectral components of the sample light are spatially separated from one another therein. A micromirror arrangement is provided in this plane, and a spectrally selective change in direction of the detection beam is carried out by controlling the micromirrors, where a useful light component of the detection beam arrives on a detector. At least one second micromirror arrangement and a 1:1 imaging of the first micromirror arrangement in the second micromirror arrangement is provided. Alternatively, the same micromirror arrangement is passed at least twice, where, in the light path between the first pass and second pass, a spatial offset of the light beam of at least the first pass and second pass is generated on the micromirror arrangement by optical means.
Abstract:
A projector, having an illumination modulator having multiple illumination pixels a projection lens projecting the light being modulated in a pixel-individual manner onto an image modulator having multiple image pixels to generate the image. A controller generates illumination control data for the illumination modulator and generates image control data for the image modulator. The illumination control data has either an on-value or an off-value The illumination control data (MS) is generated such that the on-value for each illumination pixel is associated with at least one image pixel that is to represent a brightness value within the image and an off-value for all other illumination pixels, with the exception that the illumination control data for at least one of the other illumination pixels that is at a distance by not more than one predetermined pixel number, has an on-value.
Abstract:
A projection system having a first tilting mirror matrix, a second tilting mirror matrix, and an imaging lens, which projects the first tilting mirror matrix onto the second tilting mirror matrix, wherein each tilting mirror matrix has multiple tilting mirrors, the tilting axes of which are positioned in a modulator surface plane. The imaging lens includes a first lens and an imaging mirror, and the imaging mirror forms an aperture stop of the imaging lens, wherein the aperture diaphragm includes an uneven angle of 90° together with the normal of the modulator surface of the first tilting mirror matrix without taking into account any optical path folds.
Abstract:
A display device includes an image acquisition module which has an image sensor and a first focal plane, which captures a picture of an object, and an observation module which images the object such that a user can perceive it with his eye. A second focal plane is set by the observation module and the accommodation state of the eye, and with a measuring module for measuring the accommodation state of the eye. A control unit adjusts the position of the first focal plane on the basis of the measured accommodation state such that it coincides with the second focal plane.