Abstract:
A catalyst component (A) for olefin polymerization is prepared by contacting a solid component (a) containing magnesium, titanium, halogen and an internal electron donor compound with an organosilicon compound (b), wherein the organosilicon compound (b) is one or more selected from a Si—H functional group containing chainlike polysiloxane (b1) represented by formula (Ix), a cyclic polysiloxane (b2) represented by formula (Iy) and a Si—H functional group containing organosilicon compound (b3) represented by formula (Iz). In addition, a process for preparing the catalyst component and the corresponding catalyst is described. The catalyst component and its catalyst have high catalytic activity, good hydrogen response, and good stereospecificity, the catalyst can release its activity more evenly, and the obtained polymer has significantly increased bulk density. The definitions of R1 to R10, n and z in the formulae (Ix), (ly) and (Iz) are as described in the specification.
Abstract:
A catalyst component (A) for olefin polymerization is prepared by contacting a solid component (a) containing magnesium, titanium, halogen and an internal electron donor compound with an organosilicon compound (b), wherein the organosilicon compound (b) is one or more selected from a Si—H functional group containing chainlike polysiloxane (b1) represented by formula (Ix), a cyclic polysiloxane (b2) represented by formula (Iy) and a Si—H functional group containing organosilicon compound (b3) represented by formula (Iz). In addition, a process for preparing the catalyst component and the corresponding catalyst is described. The catalyst component and its catalyst have high catalytic activity, good hydrogen response, and good stereospecificity, the catalyst can release its activity more evenly, and the obtained polymer has significantly increased bulk density. The definitions of R1 to R10, n and z in the formulae (Ix), (ly) and (Iz) are as described in the specification.
Abstract:
Fibers and methods of forming the fibers are described herein. The fibers generally include an ethylene based polymer exhibiting a molecular weight distribution of from about 2 to about 8.
Abstract:
A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.
Abstract:
The invention relates to a dialkoxyl magnesium carrier, which is a product produced by a reflux reaction of magnesium, an alcohol and mixed halogenated agents under an inert atmosphere. The mixed halogenated agents are iodine and magnesium chloride, and the weight ratio between iodine and magnesium chloride is 0.05:1-1:0.01. The dialkoxyl magnesium carrier is spheroid with uniform particle size distribution, excellent particle morphology and high bulk density. A solid catalyst component and a catalyst based on this carrier for olefin polymerization are also provided, and olefin polymers having a wide molecular weight distribution, good stereoregularity, excellent particle morphology and a low content of fine powders can be obtained.
Abstract:
Oriented films and methods of forming the same are discussed herein. The oriented films generally include a propylene based polymer and an additive selected from fluoropolymers, fluoroelastomers and combinations thereof, wherein the additive is present in an amount of from about 50 ppm to about 20,000 ppm.
Abstract:
Films (or a cap layer of co-extruded films) and methods of forming the same are described herein. The films generally include a modified olefin based polymer including polypropylene and from 1 wt. % to 30 wt. % polylactic acid (PLA), wherein the modified olefin based polymer exhibits a seal initiation temperature (SIT) that is at least 5° C. less than a seal initiation temperature of the polypropylene absent the PLA and a hot tack range of at least 20° C.
Abstract:
Films (or a cap layer of co-extruded films) and methods of forming the same are described herein. The films generally include a modified olefin based polymer including polypropylene and from 1 wt. % to 30 wt. % polylactic acid (PLA), wherein the modified olefin based polymer exhibits a seal initiation temperature (SIT) that is at least 5° C. less than a seal initiation temperature of the polypropylene absent the PLA and a hot tack range of at least 20° C.
Abstract:
Injection stretch blow molded (ISBM) articles containing a bio-based polymers and methods of forming the same are described herein. The method generally includes providing a propylene-based polymer; contacting the propylene-based polymer with polylactic acid to form a polymeric blend; injection molding the blend into a preform; and stretch-blowing the preform into an article.