Abstract:
A method for printing a periodic pattern having a first symmetry and a first period into a photosensitive layer. The method includes providing a mask bearing a pattern of at least two overlapping sub-patterns which have a second symmetry and a second period, the features of each sub-pattern being formed in a transmissive material, providing a substrate bearing the layer, arranging the mask with a separation from the substrate, providing light having a central wavelength for illuminating the mask to generate a light-field in which light of the central wavelength forms a range of intensity distributions between Talbot planes, illuminating said mask pattern with said light while maintaining the separation or changing it by a distance whereby the photosensitive layer is exposed to an average of the range of intensity distributions, wherein the light transmitted by each sub-pattern is shifted in phase relative to that transmitted by another sub-pattern.
Abstract:
A lithographic method related to Talbot imaging for printing a desired pattern of features that is periodic or quasi-periodic in at least one direction onto a substrate surface, which method includes providing a mask bearing a pattern of mask features, arranging the substrate parallel and in proximity to the mask, providing an illumination source having a central wavelength and a spectral bandwidth, forming from said source an illumination beam with an angular distribution of intensity, arranging the distance of the substrate from the mask and exposing the mask pattern to said beam so that each angular component of illumination exposes the substrate to substantially the entire range of lateral intensity distributions that occur between successive Talbot image planes for the illumination wavelengths, wherein the angular distribution of the beam is designed in conjunction with the pattern of features in the mask and the distance of the substrate from the mask.
Abstract:
A method for printing a desired periodic pattern into a photosensitive layer on a substrate includes providing a mask bearing a periodic pattern whose period is a multiple of that of the desired pattern. The substrate is disposed in proximity to the mask, at least one beam is provided for illuminating the mask pattern to generate a transmitted light-field described by a Talbot distance. The layer is exposed to time-integrated intensity distributions in a number of sub-exposures by illuminating the mask pattern with the at least one beam while changing the separation between substrate and mask by at least a certain fraction of, but less than, the Talbot distance. The illumination or the substrate is configured relative to the mask for the different sub-exposures so that the layer is exposed to the same time-integrated intensity distributions that are mutually laterally offset by a certain distance and in a certain direction.
Abstract:
A method and an apparatus print a pattern of periodic features into a photosensitive layer. The methods includes the steps of: providing a substrate bearing the layer, providing a mask, arranging the substrate such that the mask has a tilt angle with respect to the substrate in a first plane orthogonal thereto, and providing collimated light for illuminating the mask pattern so as to generate a transmitted light-field composed of a range of transversal intensity distributions between Talbot planes separated by a Talbot distance so that the transmitted light-field has an intensity envelope in the first plane. The mask is illuminated with the light while displacing the substrate relative to the mask in a direction parallel to the first plane and to the substrate. The tilt angle and the intensity envelope are arranged so that the layer is exposed to an average of the range of transversal intensity distributions.
Abstract:
A method for printing a periodic pattern having a first symmetry and a first period into a photosensitive layer. The method includes providing a mask bearing a pattern of at least two overlapping sub-patterns which have a second symmetry and a second period, the features of each sub-pattern being formed in a transmissive material, providing a substrate bearing the layer, arranging the mask with a separation from the substrate, providing light having a central wavelength for illuminating the mask to generate a light-field in which light of the central wavelength forms a range of intensity distributions between Talbot planes, illuminating said mask pattern with said light while maintaining the separation or changing it by a distance whereby the photosensitive layer is exposed to an average of the range of intensity distributions, wherein the light transmitted by each sub-pattern is shifted in phase relative to that transmitted by another sub-pattern.
Abstract:
A lithographic method related to Talbot imaging for printing a desired pattern of features that is periodic or quasi-periodic in at least one direction onto a substrate surface, which method includes providing a mask bearing a pattern of mask features, arranging the substrate parallel and in proximity to the mask, providing an illumination source having a central wavelength and a spectral bandwidth, forming from said source an illumination beam with an angular distribution of intensity, arranging the distance of the substrate from the mask and exposing the mask pattern to said beam so that each angular component of illumination exposes the substrate to substantially the entire range of lateral intensity distributions that occur between successive Talbot image planes for the illumination wavelengths, wherein the angular distribution of the beam is designed in conjunction with the pattern of features in the mask and the distance of the substrate from the mask.
Abstract:
A method and apparatus for automatically printing a pattern of features from a plurality of hologram masks on a lithographic machine, which method includes arranging the plurality of hologram masks on first faces of a plurality of prisms such that the pattern of features recorded in each hologram mask can be printed by an exposure beam illuminating second faces of the plurality of prisms; providing an exposure position at which any of the prisms and hologram masks can be arranged such that the patterns recorded in the hologram mask can be printed; providing a prism storage and transport system in which the prisms and hologram masks not at the exposure position can be arranged and for transporting the prisms and hologram masks between any of the exposure position and prism storage positions; and providing a control system for the prism transport and storage system.
Abstract:
A method for forming a surface-relief grating with a desired spatial variation of duty cycle in a layer of photoresist includes: providing a first mask bearing a high-resolution grating of linear features, arranging the first mask at a first distance from a substrate, providing a second mask bearing a variable-transmission grating of opaque and transparent linear features that has a designed spatial variation of duty cycle, arranging the second mask at a distance before the first mask such that the linear features of the variable-transmission grating are orthogonal to the linear features of the high-resolution grating, illuminating the second mask while varying the first distance according to displacement Talbot lithography and also displacing the second mask at an angle to its linear features such that there is substantially no component of modulation with the period of the variable-transmission grating in the energy density distribution that exposes the photoresist.
Abstract:
A lithographic method related to Talbot imaging for printing a desired pattern of features that is periodic or quasi-periodic in at least one direction onto a substrate surface, which method includes providing a mask bearing a pattern of mask features, arranging the substrate parallel and in proximity to the mask, providing an illumination source having a central wavelength and a spectral bandwidth, forming from said source an illumination beam with an angular distribution of intensity, arranging the distance of the substrate from the mask and exposing the mask pattern to said beam so that each angular component of illumination exposes the substrate to substantially the entire range of lateral intensity distributions that occur between successive Talbot image planes for the illumination wavelengths, wherein the angular distribution of the beam is designed in conjunction with the pattern of features in the mask and the distance of the substrate from the mask.
Abstract:
A method and an apparatus print a pattern of periodic features into a photosensitive layer. The methods includes the steps of: providing a substrate bearing the layer, providing a mask, arranging the substrate such that the mask has a tilt angle with respect to the substrate in a first plane orthogonal thereto, and providing collimated light for illuminating the mask pattern so as to generate a transmitted light-field composed of a range of transversal intensity distributions between Talbot planes separated by a Talbot distance so that the transmitted light-field has an intensity envelope in the first plane. The mask is illuminated with the light while displacing the substrate relative to the mask in a direction parallel to the first plane and to the substrate. The tilt angle and the intensity envelope are arranged so that the layer is exposed to an average of the range of transversal intensity distributions.