Abstract:
Electrolysis cell in the constructive form of single elements, intended for instance for the production of chlorine, hydrogen and/or caustic soda and designed in such a way that the portion of inactive membrane surface is minimised thanks to an optimised flange type so that the ratio between the flange surface of a semi-shell and the active membrane surface can be set to less than 0.045, neither the semi-shells nor the membrane being provided with bores or recesses for accommodating the clamping members.
Abstract:
An electrolytic cell consisting of two semi-shells and encompassing mainly the inlet and outlet devices, components for the flow control, a membrane as well as anode and cathode.
Abstract:
What is proposed is an apparatus for conducting an electrolysis with an oxygen depolarized cathode, comprising: (a) an electrolyser 1 which (b) is connected on the reactant side via an inlet control valve 2 to an oxygen source 3, and (c) on the product side has at least one off gas line 4, (d) which has at least one pressure regulator (PT) 5, at least one gas analyser (QI) 6, at least one flow regulator (FT) 7 and at least one outlet control valve 8, wherein (e) the pressure regulator 5 controls the inlet control valve 2, (f) the gas analyser 6 controls the flow regulator 7 or the outlet control valve 8 and/or (g) the flow regulator 7 controls the outlet control valve 8.
Abstract:
An electrolytic cell consisting of two semi-shells and encompassing mainly the inlet and outlet devices, components for the flow control, a membrane as well as anode and cathode.
Abstract:
The invention relates to a method for producing electrically conducting nickel oxide surfaces made of nickel-containing material. According to the method, the nickel surface is first degreased and is then roughened for approximately ten minutes in a solution containing about one percent of hydrochloric acid, the process being accelerated by adding hydrogen peroxide solution, resulting in the electrolyte turning green. The nickel surface is briefly wetted, the nickel material is introduced into a solution of 3.5 molar lye to which about ten percent of hydrogen peroxide is added and is kept therein for ten minutes, and the resulting nickel hydroxide surface is dehydrated in a subsequent thermal process and is then further oxidized to obtain nickel oxide. The invention further relates to a conductive boundary layer that is produced according to the method, the electrodes therefrom, and the use thereof in chlorine-alkali electrolysis processes, in fuel cells and storage batteries.
Abstract:
The invention relates to a method for the production of a gas diffusion electrode from a silver catalyst on a PTFE-substrate. The pore system of the silver catalyst is filled with a moistening filling agent. A dimensionally stable solid body having a particle size greater than the particle size of the silver catalyst is mixed with the silver catalyst. Said compression-stable mass is formed in a first calendar in order to form a homogenous catalyst band. In a second calendar, an electroconductive discharge material is embossed in the catalyst band, and heating takes places between the first and the second calendar by means of a heating device, wherein at least parts of the moistened filling agent are eliminated. The invention also relates to a gas diffusion electrode which is produced according to said method.
Abstract:
Electrolysis cell in the constructive form of single elements, intended for instance for the production of chlorine, hydrogen and/or caustic soda and designed in such a way that the portion of inactive membrane surface is minimised thanks to an optimised flange type so that the ratio between the flange surface of a semi-shell and the active membrane surface can be set to less than 0.045, neither the semi-shells nor the membrane being provided with bores or recesses for accommodating the clamping members.
Abstract:
A method for coating a substrate on one or more sides having catalytically active material producible by material deposition under vacuum in a vacuum chamber, using the following steps: loading a substrate in the chamber evacuating the chamber, cleaning the substrate by introducing a gaseous reducing agent, removing the gaseous reducing agent, applying an intermediate layer by means of vacuum arc evaporation, wherein a substrate comprising the same or similar material is introduced into the vacuum chamber, controlling the chamber temperature, coating by vacuum arc evaporation, a metal taken from the group ruthenium, iridium, titanium and mixtures thereof while oxygen is supplied, in a last step the coated substrate is removed from the chamber, wherein at least 99% of the substrate coating is free of constituents originally contained in the substrate itself, and at least 99% of the coating applied on the intermediate layer is kept free of non-oxidized metals.
Abstract:
With the help of a method for production of a gaseous diffusion electrode from a silver catalyst on PTFE-substrate, it is endeavored to achieve results which can be reproduced, by avoiding the disadvantages of the state-of-the-art technology, whereby this is achieved in that the porous system of the silver catalyst is filled with a wetted fluid; a dimension-stable solid body with a grain size above that of the silver catalyst is mixed below the silver catalyst; the thus compression-stable mass is shaped into a homogenous catalyst band in a calender; and in a second calender step, an electrically conductive conductor material is imprinted into the catalyst band.
Abstract:
A method for coating a substrate on one or more sides having catalytically active material producible by material deposition under vacuum in a vacuum chamber, using the following steps: loading a substrate in the chamber evacuating the chamber, cleaning the substrate by introducing a gaseous reducing agent, removing the gaseous reducing agent, applying an intermediate layer by means of vacuum arc evaporation, wherein a substrate comprising the same or similar material is introduced into the vacuum chamber, controlling the chamber temperature, coating by vacuum arc evaporation, a metal taken from the group ruthenium, iridium, titanium and mixtures thereof while oxygen is supplied, in a last step the coated substrate is removed from the chamber, wherein at least 99% of the substrate coating is free of constituents originally contained in the substrate itself, and at least 99% of the coating applied on the intermediate layer is kept free of non-oxidized metals.