Abstract:
A busbar assembly for an inverter module has a power module, a capacitor module with at least one capacitor, and a battery all interconnected by a busbar. The busbar includes a base busbar portion that is electrically coupled to the battery and a branch busbar portion that extends from the base busbar to the power module and that electrically connects to the capacitor module at points located between the base node and the power module.
Abstract:
Single-phase full bridge boost converter systems and methods are provided. One system includes a direct-quatrature (D-Q) control system configured to generate a control voltage (vcon) including direct-phase and quadrature-phase voltage components. The system also includes a comparator configured to compare vcon to a carrier waveform voltage, generate switching commands based on the comparison, and transmit the switching commands to a current switch. Another system includes a boost converter including multiple switches coupled to a load and an AC voltage source. The switches are configured to provide charging current to the load in response to receiving switching commands. A D-Q control system configured to receive and delay an ia value, and issue switching commands based on the ia and delayed ia value is also included. A method includes performing a D-Q conversion to generate DC current including direct-phase and quadrature-phase current components, and issuing switching commands based on the current components.
Abstract:
A resistor-less device for limiting inrush current in power system startup, for a DC-link capacitor. A DC-link capacitor is coupled to an output of an AC power source rectifying circuit, providing a DC-bus voltage. A current direction sensitive, controllable electrical switch comprising a reverse based diode in parallel with a controllable forward based diode, is in series connection with the DC-link capacitor. A diode controller is coupled to the controllable forward based diode, controlling a conducting state of the forward based diode. A system measurement signal is input to the diode controller and a diode controller module having decision logic, uses the system measurement signal to turn “on” the conducting (or non-conducting) state of the controllable forward based diode, at a predetermined time and duration, wherein inrush current on a system startup is limited.
Abstract:
Single-phase full bridge boost converter systems and methods are provided. One system includes a direct-quatrature (D-Q) control system configured to generate a control voltage (vcon) including direct-phase and quadrature-phase voltage components. The system also includes a comparator configured to compare vcon to a carrier waveform voltage, generate switching commands based on the comparison, and transmit the switching commands to a current switch. Another system includes a boost converter including multiple switches coupled to a load and an AC voltage source. The switches are configured to provide charging current to the load in response to receiving switching commands. A D-Q control system configured to receive and delay an ia value, and issue switching commands based on the ia and delayed ia value is also included. A method includes performing a D-Q conversion to generate DC current including direct-phase and quadrature-phase current components, and issuing switching commands based on the current components.
Abstract:
A busbar assembly for an inverter module has a power module, a capacitor module with at least one capacitor, and a battery all interconnected by a busbar. The busbar includes a base busbar portion that is electrically coupled to the battery and a branch busbar portion that extends from the base busbar to the power module and that electrically connects to the capacitor module at points located between the base node and the power module.
Abstract:
An inverter circuit couples a DC voltage source having a primary side and a reference side to an electric motor or other AC machine having multiple electrical phases. An inverter circuit includes switches, diodes and a controller. For each of the electrical phases, a first switch couples the electrical phase to the primary side of the DC voltage source and a second switch couples the electrical phase with the reference side of the DC voltage source. For each of the first and second switches, an associated anti-parallel diode is configured to provide an electrical path when the switch associated with the diode is inactive. The controller is coupled to the switching inputs of each of the first and second switches and is configured to provide a control signal thereto, wherein the control signal provided to each switch comprises, in a low frequency mode, a first portion and a second portion, wherein the first portion comprises a first pulse width modulation scheme and the second portion comprises a second pulse width modulation scheme different from the first modulation scheme.
Abstract:
Apparatus for charging an electric vehicle or a hybrid vehicle are provided. Particularly, apparatus for charging a hybrid vehicle from a single-phase standard (110 volt, single-phase, 60 Hz in the U.S.) are provided. In one implementation, a single-phase phase locked loop (PLL) receives a single-phase power gird voltage and delays it by one-quarter cycle to create an orthogonal imaginary second power signal. These signals are then applied to a transform matrix within a PLL to phase lock an output signal to the incoming power grid voltage.
Abstract:
Apparatus for charging an electric vehicle or a hybrid vehicle are provided. Particularly, apparatus for charging a hybrid vehicle from a single-phase standard (110 volt, single-phase, 60 Hz in the U.S.) are provided. In one implementation, a single-phase phase locked loop (PLL) receives a single-phase power gird voltage and delays it by one-quarter cycle to create an orthogonal imaginary second power signal. These signals are then applied to a transform matrix within a PLL to phase lock an output signal to the incoming power grid voltage.
Abstract:
An inverter circuit couples a DC voltage source having a primary side and a reference side to an electric motor or other AC machine having multiple electrical phases. An inverter circuit includes switches, diodes and a controller. For each of the electrical phases, a first switch couples the electrical phase to the primary side of the DC voltage source and a second switch couples the electrical phase with the reference side of the DC voltage source. For each of the first and second switches, an associated anti-parallel diode is configured to provide an electrical path when the switch associated with the diode is inactive. The controller is coupled to the switching inputs of each of the first and second switches and is configured to provide a control signal thereto, wherein the control signal provided to each switch comprises, in a low frequency mode, a first portion and a second portion, wherein the first portion comprises a first pulse width modulation scheme and the second portion comprises a second pulse width modulation scheme different from the first modulation scheme.