Abstract:
The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.
Abstract:
The present invention provides compositions and methods for regulating expression of heterologous nucleotide sequences in a plant. Compositions include a novel nucleotide sequence for a root-preferred and inducible promoter for the gene encoding a soybean ripening-related protein. A method for expressing a heterologous nucleotide sequence in a plant using the promoter sequences disclosed herein is provided. The method comprises stably incorporating into the genome of a plant cell a nucleotide sequence operably linked to the root-preferred promoter of the present invention and regenerating a stably transformed plant that expresses the nucleotide sequence.
Abstract:
Methods and compositions for modulating development and defense response are provided. Nucleotide sequences encoding a LOX protein are provided. Nucleotide sequences comprising the LOX promoter are also provided. The sequences can be used in expression cassettes for modulating development, developmental pathways, and the plant defense response. Transformed plants, plant cells, tissues, and seed are also provided.
Abstract:
A method for improving the sensitivity of an assay to determine the pathogenicity of a plant root pathogen using a soil amendment is presented. The method involves growing the plant root in the presence of a soil amendment after exposure of the plant root to the pathogen. A method of breeding plants is also provided.
Abstract:
This invention relates to an isolated isoflavone synthase 1 (IFS1) promoter nucleic acid fragment. The invention also relates to the construction of chimeric genes comprising all or a portion of the IFS1 promoter directing the expression of transgenes, in sense or antisense orientation.
Abstract:
The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.
Abstract:
The invention relates to the genetic manipulation of plants, particularly to the expression of nucleotide sequences from defense-related signaling genes. Isolated nucleotide sequences encoding a neoxanthin cleavage enzyme, an amino acid permease, and a novel protein are provided. Also provided are isolated nucleotide sequences comprising promoters that drive expression in a plant in an inducible or tissue-preferred manner. The nucleotide sequences find use in increasing the resistance of plants to pathogens and other stresses, modifying ABA metabolism in plants, modifying amino acid transport and content in plants, and regulating gene expression in plants. Additionally provided are isolated proteins, and transformed plants and seeds thereof.
Abstract:
Compositions and methods for enhancing disease resistance in plants are provided. Compositions comprise sunflower resistance gene analogs. The methods involve transforming a plant with a resistance nucleotide sequence. The methods find use in enhancing broad-based resistance in plants to pathogens. Also provided are transformed plants, plant cells, tissues, and seeds having enhanced disease resistance. The R gene analogs can be used as molecular markers for disease resistance.
Abstract:
This invention relates generally to mechanisms of gene expression in plants and more specifically to regulation of expression of genes in plants in a "tissue-preferred" manner. A method for isolation of transcriptional regulatory elements that contribute to tissue-preferred gene expression is disclosed. Transcriptional regulatory elements isolated using the methods of this invention are demonstrated to direct tissue-preferred gene expression of genes within certain tissues of a plant. DNA molecules representing tissue-preferred transcriptional regulatory elements, vectors comprising said DNA molecules and transgenic plants comprising said vectors are demonstrated. These transcriptional regulatory units are utilized to drive tissue-preferred expression of a gene that confers a selective advantage upon a plant.
Abstract:
The present invention provides compositions and methods for regulating expression of heterologous nucleotide sequences in a plant. Compositions include a novel nucleotide sequence for a root-preferred and inducible promoter for the gene encoding a soybean ripening-related protein. A method for expressing a heterologous nucleotide sequence in a plant using the promoter sequences disclosed herein is provided. The method comprises stably incorporating into the genome of a plant cell a nucleotide sequence operably linked to the root-preferred promoter of the present invention and regenerating a stably transformed plant that expresses the nucleotide sequence.