Abstract:
A method of forming an implant having a porous region replicated from scanned bone, the method comprising imaging bone with a high resolution digital scanner to generate a three-dimensional design model of the bone; removing a three-dimensional section from the design model; fabricating a porous region on a digital representation of the implant by replacing a solid portion of the digital implant with the section removed from the digital representation; and using an additive manufacturing technique to create a physical implant including the fabricated porous region.
Abstract:
Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
Abstract:
A ceramic implant having a rough surface texture and a method for forming the same. The method includes forming a green body of a first ceramic composition. The green body is reduced to smaller pieces thereby forming ceramic fragments. A mold is filled with a second ceramic composition to form a ceramic base. Ceramic fragments are added to the mold and an outer layer is formed over at least a portion of the ceramic base. Pressure is applied to the mold to compress the outer layer onto the ceramic base and to form a green assembly. The green assembly is sintered to form a ceramic implant having a rough surface texture.
Abstract:
The present invention is a surgical suturing device that assists in applying an open-looped, pre-knotted suture around a targeted area of application. The surgical suturing device contains a handle, a grasping mechanism, a clamp tube, a pusher tube, a cutter tube, and a pivot arm. A first coupler is positioned on the pivot arm. A second coupler is positioned at the end of the shaft, offset from the pivot arm. A suture knot is fitted over the second coupler, and a strand is connected to the first coupler. When activated, the pivot arm moves into a closed position, thereby encircling the suturing portion and joining the first coupler to the second coupler. Next, the suture knot is pushed forward off the second coupler and tightened up against the suturing portion. The pusher tube slides back, allowing the cutter tube to cut the excess suture cord.
Abstract:
The disclosure provides a simple and effective way of synthesizing robust organic-inorganic hybrid gels and ultra-thin films using vaporization of a gel precursor. The gels are synthesized at relatively low temperature allowing the activity of the immobilized species to be maintained. The disclosure provides robust, synthetic, selective, active and/or passive transport systems in the form of functional biologically active species and mechanisms for forming them. These systems allow selective and passive or active transport of ionic, molecular and biological species through the incorporation of functional biological molecules and biomolecular assemblies in a rigid matrix.
Abstract:
Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
Abstract:
A ceramic implant having a rough surface texture and a method for forming the same. The method includes forming a green body of a first ceramic composition. The green body is reduced to smaller pieces thereby forming ceramic fragments. A mold is filled with a second ceramic composition to form a ceramic base. Ceramic fragments are added to the mold and an outer layer is formed over at least a portion of the ceramic base. Pressure is applied to the mold to compress the outer layer onto the ceramic base and to form a green assembly. The green assembly is sintered to form a ceramic implant having a rough surface texture.
Abstract:
An implant and method for applying an osteoconductive coating on a non-conductive surface of an implant. The method includes depositing an electroconductive interlayer on at least a portion of a non-conductive implant surface. A secondary process is applied to the interlayer and an osteoconductive coating is thereby formed on the implant. In various embodiments, the electroconductive interlayer is deposited as a non-structural film and comprises a dense, non-porous metal such as titanium, titanium alloys, cobalt, cobalt alloys, chromium, chromium alloys, tantalum, tantalum alloys, iron alloys, stainless steel, and mixtures thereof. The osteoconductive coating may include a metal, a porous metal, or calcium phosphate. The osteoconductive coating may include additional agents, such as bone product, growth factor, bioactive agent, antibiotic, or combinations thereof.
Abstract:
A method for electrochemically depositing discrete regions of calcium phosphate onto a medical implant. The method includes providing an implant including at least one area having a metallic surface. At least a portion of the metallic surface is contacted with an electrolyte solution comprising calcium ions and phosphate ions. The metallic surface is used as a cathode, and an electrical potential is applied between the cathode and the electrolyte solution. The electrical potential is applied with a constant current density of from about 10 to about 50 mA/cm2 for a period of time of from about 1 to about 20 minutes. A plurality of discrete regions of needle-shaped hydroxyapatite crystals are electrochemically deposited onto the metallic surface.
Abstract translation:电化学沉积磷酸钙离散区域到医用植入物上的方法。 该方法包括提供包括具有金属表面的至少一个区域的植入物。 金属表面的至少一部分与包含钙离子和磷酸根离子的电解质溶液接触。 金属表面用作阴极,并且在阴极和电解质溶液之间施加电势。 以约10至约50mA / cm 2的恒定电流密度施加电位约1至约20分钟的时间。 针状羟基磷灰石晶体的多个离散区域电化学沉积在金属表面上。
Abstract:
The disclosure provides a simple and effective way of synthesizing robust organic-inorganic hybrid gels and ultra-thin films using vaporization of a gel precursor. The gels are synthesized at relatively low temperature allowing the activity of the immobilized species to be maintained. The disclosure provides robust, synthetic, selective, active and/or passive transport systems in the form of functional biologically active species and mechanisms for forming them. These systems allow selective and passive or active transport of ionic, molecular and biological species through the incorporation of functional biological molecules and biomolecular assemblies in a rigid matrix.