Abstract:
An arrangement for avoiding rollovers when accelerating motor vehicles, single-track or double-track vehicles such as motorcycles or passenger cars in particular, with an arrangement for comparing a difference in rotational speed between the speed of at least one front wheel or the front axle and the speed of at least one rear wheel or the rear axle of the motor vehicle with an adjustable rotational speed difference threshold value. Also included is an arrangement for detecting a wheel acceleration for at least one front wheel and for at least one rear wheel and an arrangement for activating the vehicle's propulsion system when the rotational speed difference threshold value is reached or exceeded if the wheel acceleration is simultaneously negative for at least one front wheel and positive for at least one rear wheel.
Abstract:
The invention relates to a brake apparatus with an electric service motor, which serves to actuate the brake via an actuating device. To enable setting an air clearance, the apparatus includes a readjuster for setting the air clearance, the brake is actuated with the readjuster and then reversed by a defined length. To realize a parking braking function, the apparatus includes a parking brake that can be repositioned from a released position to a braking position and that acts on the actuating device.
Abstract:
A method for circuit separation testing in a double gearwheel pump having two gearwheel pumps includes charging one of the two gearwheel pumps with pressure and measuring the pressure build-up in the charged gearwheel pump and/or the pressure-build up in the other gearwheel pump. The pressure build-up is preferably realized by the gearwheel pump itself. The gearwheel pumps have a common pump shaft and are preferably configured as hydraulic pumps of a hydraulic vehicle brake system with slip control. The method detects any leak at the leadthrough of the pump shaft through a partition wall between the two gearwheel pumps.
Abstract:
A pulsation damper of a vehicle braking system includes a connection for supplying and discharging fluid into a damper chamber. The connection has a segmented design with a first segment of the connection forming a supply line and a second segment of the connection forming a discharge line. The two segments are delimited from each other by a separating wall.
Abstract:
A drum brake for use in a brake system (10) having first (14) and second (16) shoes retained on a backing plate (20). The first brake shoe (14) has a first end (22) connected to an actuator (12) and a second end (26) connected to an anchor arrangement (24) and the second brake shoe (16) has a first end (36) connected to the actuator (12) and a second end (38) connected to the anchor arrangement (24) The actuator (12) responds to an input signal during a brake application by moving the first (14) and second (16) brake shoes into engagement with a drum (18). The anchor arrangement (24) includes a load sensor (64) for measuring a torque generated between the first (14) and second (16) brake shoes and the drum (18). The anchor arrangement (24) has a bracket (44) with a base (46) having first (48) and second (50) side walls which are secured to the backing plate (20). The first side wall (48) has a first central opening (56) therein while the second side wall (50) has a second central opening (58) therein. A core member (64) of the load sensor is retained by the bracket (44) between the first (48) and second (50) side walls is connected to a controller (28). First linkage (66) extends through the first opening (56) for connecting the first brake shoe (14) to the core member (64) while a second linkage (74) extends through the second opening (58) for connecting the second brake shoe (16) to the core member (64). A first linear dimension defined by the core member (64) and first (66) and second (74) linkages is less that a second linear dimension between the first (48) and second (50) side wall such that a gap "x" is created. The first (14) and second (16) brake shoes on engagement with the drum (18) defining a leading brake shoe and a trailing brake shoe. The leading brake shoe produces a first force which moves the core member (64) within the gap "x" to bring one of the first (64) and second (74) linkages into engagement with said bracket (44) and thereafter compress the core member (64) and independently modify an output signal generated therein to define an operational torque developed during a brake application.
Abstract:
The present invention relates to a piston pump for delivering hydraulic fluid, including a reciprocating piston for building up pressure in a pressure chamber; a sealing element is situated on the piston; during a compression phase, this sealing element produces a seal between the pressure chamber and a low-pressure region of the piston pump and during an intake phase, it opens a connection between the pressure chamber and the low-pressure region in order to draw hydraulic fluid into the pressure chamber.
Abstract:
The invention relates to an electromechanical wheel brake device, with an electric motor that can press a frictional brake lining against a brake body (brake disk) by a reduction gear (planetary gear) and a rotation/translation conversion gear (ball screw). The invention proposes embodying the electric motor as a transverse flux motor with three phase windings; each phrase winding has a circular, annular excitation winding that is disposed inside U-shaped yokes, which are distributed over the circumference of the excitation winding. This embodiment of the electric motor permits a compact design of the electric motor in an annular, hollow shaft design so that the reduction gear and the rotation/translation conversion gear can be disposed at least partially inside the electric motor.
Abstract:
A pulsation damper of a vehicle braking system includes a connection for supplying and discharging fluid into a damper chamber. The connection has a segmented design with a first segment of the connection forming a supply line and a second segment of the connection forming a discharge line. The two segments are delimited from each other by a separating wall.
Abstract:
A method for circuit separation testing in a double gearwheel pump having two gearwheel pumps includes charging one of the two gearwheel pumps with pressure and measuring the pressure build-up in the charged gearwheel pump and/or the pressure-build up in the other gearwheel pump. The pressure build-up is preferably realized by the gearwheel pump itself. The gearwheel pumps have a common pump shaft and are preferably configured as hydraulic pumps of a hydraulic vehicle brake system with slip control. The method detects any leak at the leadthrough of the pump shaft through a partition wall between the two gearwheel pumps.
Abstract:
A pressure force sensor has two oppositely located connectors for a force introduction to an inside located force sensor module which emits an output signal as a function of an external pressure force, a fork arm attached to each of the connectors and having two fork ends which are offset by 90° and enclose the force sensor module, and pressure elements located between respective bases of the fork arms and a force introduction surface of the force sensor module, the pressure elements being also laterally enclosed by angled sections of the fork ends, so that pressure forces as well as tensile forces can be passed from the connectors to the force introduction surface of the force sensor module.