Abstract:
The invention relates to an internal gear pump for a brake system, in the pump housing of which an internally toothed ring gear and a pinion meshing with the toothing of the ring gear are pivotally supported about parallel axes. As a result the toothing thereof limits an approximately crescent-shaped tapering annular space, in which a filler piece supported toward the intake side of the pump is arranged. The circumferential sides of the filler piece are bent in accordance with the addendum circle of the ring gear toothing or of the pinion toothing. The sides rest against several tooth tips in a sealing manner under a spring force. According to the invention, one of the two circumferential sides of the filler piece is formed by a radially resilient circumferential wall, which is nestled against the tooth tips of the pinion or the ring gear due to the deflection based on the inherent spring force thereof.
Abstract:
A support ring of a sealing ring of a piston pump of a slip-controlled vehicle brake system is designed with longitudinal grooves in order to prevent a pressure build-up between the sealing ring and the support ring due to slip leakage.
Abstract:
A piston pump as a recirculating pump of a hydraulic traction control vehicle brake system is disclosed, with two pump pistons which are arranged in an opposed arrangement and bear on the outside against an eccentric bearing ring for their lifting drive. The pump pistons are arranged with an offset in the longitudinal direction of a pump shaft, so that they exert a moment upon the bearing ring, which moment presses rolling bodies in the rolling bearing against the pump shaft even when the forces with which the pump pistons press from outside against the bearing ring cancel one another. The rolling bodies roll even when the forces of the pump pistons are compensated.
Abstract:
The invention relates to a brake system for a vehicle, with a main brake cylinder, a fluid control unit, and at least one wheel brake. The fluid control unit has, for brake pressure modulation in at least one brake circuit a switchover valve, an intake valve and a recirculating pump for each brake circuit. According to the invention, the fluid control unit has, for each brake circuit, a sliding valve which is connected into a suction line between the recirculating pump and the main brake cylinder. The sliding valve restricts the effective pressure on a suction side of the recirculating pump to a predeterminable maximum pressure value. In this case, the sliding valve can be arranged in series with or parallel to the intake valve.
Abstract:
The invention relates to a drive device for a piston pump of a braking system of a vehicle having at least one piston element displaced in the longitudinal direction in a housing between an upper dead center and a lower dead center by means of an eccentric device. The eccentric device comprises at least one cam-shaped eccentric element having a covering surface forming a control curve which is used to control the displacement of the piston element. A roller bearing device is arranged between the control curve of the eccentric element and the piston element, which has such an elasticity that the piston element can be controlled according the predefined contour of the control curve of the eccentric element.
Abstract:
A piston pump for brake systems employs a pulsation-smoothing device that functions especially well in the region of the outlet valve. As a result, substantially less noise occurs, and the durability of the piston pump is substantially better. The piston pump is used essentially in traction-controlled motor vehicle brake systems.
Abstract:
The invention relates to a piston pump for a hydraulic, slip-controlled vehicle brake system. The piston pump has a piston, which is inserted with a part of its length into a sleeve. A tubular filter that encompasses the piston is attached to the sleeve and constitutes a captive retainer, which secures the piston in a captive fashion in the sleeve. In order to reduce an axial mobility of a sealing ring that seals the piston in the pump housing, the invention proposes attaching the filter, which limits the axial mobility of the sealing ring, to the sleeve in an axially mobile fashion.
Abstract:
The invention relates to a piston pump, in particular for an antilock and slip-controlled vehicle brake system. In order to embody a filter, the invention proposes providing a bushing of the piston pump with a bushing that encompasses it, wherein the bushing has beads on its ends, which are provided with grooves after the fashion of a knurling, through which incoming brake fluid flows between a wall of a pump bore and the bead into the piston pump and is therefore filtered.
Abstract:
A piston pump which is intended particularly for use in a slip-controlled hydraulic vehicle brake system. To increase a pumping volume of the piston pump at low pumping pressure, the piston pump includes a body embodied preferably as an annular body which is attached axially displaceably to the piston. The body increases a cross- sectional area of the piston and is axially acted upon by a spring element. At low pressure, the piston pump pumps with the entire cross-sectional area of the piston and the body while conversely at a higher pumping pressure, the body is held back counter to the force of the spring element and does not move together with the piston so that then the piston pumps only with its own cross-sectional area. The piston pump of the invention has the advantage of improved pressure buildup dynamics when the pumping pressure at the onset of pumping is low.
Abstract:
The vibration damper has a sleevelike shaped part comprising an elastomer as a diaphragm. The shaped part is received tightly on the opening end of a bore of a housing and surrounds an extension of a support body disposed in the bore. Provided on a side face of the extension is a groove, which communicates with a chamber in the extension. The shaped part, which on its outside is exposed to the brake fluid, with the inside of its jacket wall defines a hollow chamber, formed toward the extension of the support body and having atmospheric pressure. The vibration damper can be used in a slip-controlled hydraulic brake systems of motor vehicles.