Abstract:
A method for producing a coating composed of an electroless metal plate, such as a copper plate, tightly bonded to a polyimide layer comprises a multi-step cure of the polyimide layer carried out in combination with a palladium-catalyzed electroless deposition process. A solution of a polyamic acid compound that is the precursor for the desired polyimide resin in a vaporizable solvent is applied to a substrate and heated preferably to temperature below 250.degree. C., to form a soft-cured polyimide film. The film is immersed in an aqueous palladium-tin colloidal suspension to deposit the colloidal particles thereon, which particles are then activated to form palladium nuclei dspersed on the surface. The soft-cured film is then heated, preferably above about 250.degree. C., to vaporize residual solvent and form a hard-cured polyimide layer having the palladium nuclei dispersed on the surface. The hard-cured layer is immersed in an electroless metal plating solution, whereupon the palladium nuclei catalyze deposition of the metal to form a continuous plate. In one aspect of the method, the metal-clad layer is further heated between about 350.degree. C. and 450.degree. C. to final cure the polyimide. It is found that the plate of the coating formed by this multi-cure method strongly adheres to the polymer layer to permit extended deposition and thereby form a relatively thicker plate without catastrophic separation from the polymer.
Abstract:
In an electronic package, a solder connection for bonding faying surfaces is formed of tin-bismuth alloy comprising a tertiary metal, preferably gold or silver, in an amount effective to increase the melting temperature of the alloy and enhance mechanical properties of the connection at elevated temperatures typically encountered during operation. A process for forming the solder connection comprises applying a film of the tertiary metal onto at least one faying surface and thereafter applying tin-bismuth solder paste onto the film. Preferably, a plate of tin-bismuth alloy is first electroplated onto the faying surface, onto which the tertiary metal is plated. During heating to reflow the solder, the tertiary metal dissolves to produce a uniform liquid that forms the connection.