Abstract:
In an electronic package, a solder connection for bonding faying surfaces is formed of tin-bismuth alloy comprising a tertiary metal, preferably gold or silver, in an amount effective to increase the melting temperature of the alloy and enhance mechanical properties of the connection at elevated temperatures typically encountered during operation. A process for forming the solder connection comprises applying a film of the tertiary metal onto at least one faying surface and thereafter applying tin-bismuth solder paste onto the film. Preferably, a plate of tin-bismuth alloy is first electroplated onto the faying surface, onto which the tertiary metal is plated. During heating to reflow the solder, the tertiary metal dissolves to produce a uniform liquid that forms the connection.
Abstract:
A microelectronic package (10) comprises an integrated circuit component (12) mounted on a substrate (14) by solder bump interconnections (16) formed of a lead-free, tin-base solder alloy that contains a significant copper addition. A preferred solder is composed of a tin alloy containing between about 2 and 8 weight percent copper, preferably between about 3 and 5 weight percent. In the absence of lead, it is found that precipitation of copper-containing intermetallics of the type that adversely affect tin-lead solders is reduced. Moreover, the lead-free copper-tin solder alloy exhibits a high surface tension to reduce collapse of component toward the substrate during solder reflow.
Abstract:
A microelectronic package comprises an integrated circuit component mounted on a substrate by solder bump interconnections formed of a lead-free, tin-base solder alloy that contains a significant copper addition. A preferred solder is composed of a tin alloy containing between about 2 and 8 weight percent copper, preferably between about 3 and 5 weight percent. In the absence of lead, it is found that precipitation of copper-containing intermetallics of the type that adversely affect tin-lead solders is reduced. Moreover, the lead-free copper-tin solder alloy exhibits a high surface tension to reduce collapse of component toward the substrate during solder reflow.
Abstract:
A gold bump contact on an electronic component is solder bonded to a bond pad of a printed circuit board or the like utilizing a solder composed of tin-bismuth alloy. The solder is applied to the bond pad as an electroplate or a paste, after which the gold bump is superposed onto the bond pad. The assembly is heated to a first temperature to melt the solder and thereafter maintained at a temperature less than 150.degree. C. to permit the molten solder to wet the gold surface, after which the assembly is cooled to solidify the solder and complete the connection. Wetting at the relatively low temperature retards dissolution of the gold and thereby reduces formation of unwanted gold tin intermetallic compounds that tend to decrease mechanical properties of the connection.
Abstract:
A method for attaching an integrated circuit component to a printed circuit board by a plurality of solder bump interconnections utilizes a printed circuit board comprising a solder-plated circuit trace. The trace includes terminals, each including a terminal pad and a runner section. A solder plate formed of a first solder alloy is applied to the terminal to extend continuously between the pad and the runner section. Solder bumps are affixed to the component and are formed of second compositionally distinct solder alloy having a melting temperature greater than the first alloy. The component and board are then assembled so that the bumps rest against the solder-plated terminal pads, and heated to a temperature effective to melt the solder plate but not the bump alloy. Upon cooling to resolidify the solder, the solder plate is fused to the bumps to form the interconnections.