摘要:
Embodiments of the present invention execute an anti-prefetch instruction. These embodiments start by decoding instructions in a decode unit in a processor to prepare the instructions for execution. Upon decoding an anti-prefetch instruction, these embodiments stall the decode unit to prevent decoding subsequent instructions. These embodiments then execute the anti-prefetch instruction, wherein executing the anti-prefetch instruction involves: (1) sending a prefetch request for a cache line in an L1 cache; (2) determining if the prefetch request hits in the L1 cache; (3) if the prefetch request hits in the L1 cache, determining if the cache line contains a predetermined value; and (4) conditionally performing subsequent operations based on whether the prefetch request hits in the L1 cache or the value of the data in the cache line.
摘要:
The described embodiments provide a system for executing instructions in a processor. While executing instructions in an execute-ahead mode, the processor encounters a store instruction for which a destination address is unknown. The processor then defers the store instruction. Upon encountering a load instruction while the store instruction with the unknown destination address is deferred, the processor determines if the load instruction is to continue executing. If not, the processor defers the load instruction. Otherwise, the processor continues executing the load instruction.
摘要:
Embodiments of the present invention provide a processor that merges stores in an N-entry first-in-first-out (FIFO) store queue. In these embodiments, the processor starts by executing instructions before a checkpoint is generated. When executing instructions before the checkpoint is generated, the processor is configured to perform limited or no merging of stores into existing entries in the store queue. Then, upon detecting a predetermined condition, the processor is configured to generate a checkpoint. After generating the checkpoint, the processor is configured to continue to execute instructions. When executing instructions after the checkpoint is generated, the processor is configured to freely merge subsequent stores into post-checkpoint entries in the store queue.
摘要:
A method for determining whether to store binary information in a fast way or a slow way of a cache is disclosed. The method includes receiving a block of binary information to be stored in a cache memory having a plurality of ways. The plurality of ways includes a first subset of ways and a second subset of ways, wherein a cache access by a first execution core from one of the first subset of ways has a lower latency time than a cache access from one of the second subset of ways. The method further includes determining, based on a predetermined access latency and one or more parameters associated with the block of binary information, whether to store the block of binary information into one of the first set of ways or one of the second set of ways.
摘要:
A method for determining whether to store binary information in a fast way or a slow way of a cache is disclosed. The method includes receiving a block of binary information to be stored in a cache memory having a plurality of ways. The plurality of ways includes a first subset of ways and a second subset of ways, wherein a cache access by a first execution core from one of the first subset of ways has a lower latency time than a cache access from one of the second subset of ways. The method further includes determining, based on a predetermined access latency and one or more parameters associated with the block of binary information, whether to store the block of binary information into one of the first set of ways or one of the second set of ways.
摘要:
The described embodiments provide a system for executing instructions in a processor. While executing instructions in an execute-ahead mode, the processor encounters a store instruction for which a destination address is unknown. The processor then defers the store instruction. Upon encountering a load instruction while the store instruction with the unknown destination address is deferred, the processor determines if the load instruction is to continue executing. If not, the processor defers the load instruction. Otherwise, the processor continues executing the load instruction.
摘要:
Embodiments of the present invention provide a processor that merges stores in an N-entry first-in-first-out (FIFO) store queue. In these embodiments, the processor starts by executing instructions before a checkpoint is generated. When executing instructions before the checkpoint is generated, the processor is configured to perform limited or no merging of stores into existing entries in the store queue. Then, upon detecting a predetermined condition, the processor is configured to generate a checkpoint. After generating the checkpoint, the processor is configured to continue to execute instructions. When executing instructions after the checkpoint is generated, the processor is configured to freely merge subsequent stores into post-checkpoint entries in the store queue.
摘要:
A method for detecting transfer errors in an address bus is provided. In this method, a first address parity is generated using a memory address. Next, at least two data error-correction-code (ECC) check bits are scrambled using the first address parity. Subsequently, the data ECC check bits are written to a memory and the data ECC check bits enable detection of transfer errors in the address bus. A system for detecting transfer errors in an address bus is also described.
摘要:
Embodiments of the present invention provide a system which executes a load instruction or a store instruction. During operation the system receives a load instruction. The system then determines if an unrestricted entry or a restricted entry in a store queue contains data that satisfies the load instruction. If not, the system retrieves data for the load instruction from a cache. If so, the system conditionally forwards data from the unrestricted entry or the restricted entry by: (1) forwarding data from an unrestricted entry that contains the youngest store that satisfies the load instruction when any number of unrestricted or restricted entries contain data that satisfies the load instruction; (2) forwarding data from an unrestricted entry when only one restricted entry and no unrestricted entries contain data that satisfies the load instruction; and (3) deferring the load instruction by placing the load instruction in a deferred queue when two or more restricted entries and no unrestricted entries contain data that satisfies the load instruction.
摘要:
Methods and mechanisms for operating a translation lookaside buffer (TLB). A translation lookaside buffer (TLB) includes a plurality of segments, each segment including one or more entries. A control unit is coupled to the TLB. The control unit is configured to determine utilization of segments, and dynamically disable segments in response to determining that segments are under-utilized. The control unit is also configured to dynamically enable segments responsive to determining a given number of segments are over-utilized.