Abstract:
The present invention describes a process for producing synthesis gas by partial oxidation of carbon-containing particles suspended in water with oxygen at elevated pressures and temperatures of 1000.degree. to 1600.degree. C. Three substance streams are added separately but simultaneously to the reactor. The inner substance stream consists of oxygen or a mixture of oxygen and synthesis gas. The middle substance stream forms a carbon-water suspension, and the outer substance stream carries oxygen or oxygen-containing gases. Due to the fact that these three substance streams intersect at an acute angle, an ideal distribution of the suspension with the gas streams is achieved and an optimum reaction course is ensured. In order to be able to compensate requirement fluctuations during continuous operation, the outlet opening for the carbon-water suspension and the outer gas stream can be correspondingly adapted in a continuous and independent manner.
Abstract:
A process for the preparation of ammonium nitrate by the reaction of nitric acid with ammonia in two stages at elevated temperature, in which the first stage is carried out at elevated pressure and the second stage is carried out at atmospheric pressure. The heat of neutralization released in the first stage is used to vaporize a portion of the reactor contents, the remaining heat of reaction being utilized to produce steam. The vapor leaving the first stage develops a pressure which controls the valve regulating the amount of heat recovered by steam generation. The valve is opened when the pressure of the vapor exceeds a set value, usually in the range of 3.4 to 4.8 bars. Decomposition products of ammonium nitrate are also measured and override the pressure regulated control of the proporiton of heat recovered by steam generation, so as to maintain ammonium nitrate decomposition within acceptable limits. An apparatus for carrying out the process is also disclosed.
Abstract:
An improvement in a radiation boiler for cooling a gas stream containing solid and molten particles wherein gas is introduced vertically via a gas feed at the top of a radiation boiler having a cooled gas outlet and a water bath disposed at the bottom thereof for removing the particles after they have been solidified and cooled. Between the gas feed and the water bath are disposed at least two concentrically arranged cylindrical tubular heat exchange elements vertically disposed in the boiler and forming at least one annular passage therebetween. The passage through the innermost heat exchange element is in fluid flow registry and fluid flow communication with the gas feed. A conical deflector has the axis thereof coincident with that of the innermost heat exchange element and thereby in registry with the flow of gas passing through the passage through the innermost heat exchange element and is disposed toward the bottom of the radiation boiler above the water bath but at least partially below the lower end of the innermost heat exchange element, whereby gas which strikes the conical surface of the conical deflector is deflected and passes through the at least one annular passage and in the passage of the innermost heat exchange element.
Abstract:
The invention relates to a process and a device for the discharge of residues of ash-containing fuels occurring during gasification of coal. The hot mixture of residues and water is separated in a separating chamber, whereby the residues enter a lock vessel situated under the separating chamber. The hot water is recycled to the water bath situated under the gasification reactor. After the lock vessel has been filled with residue, the hot water in the separating chamber is cooled or replaced by cold water. The discharge of the residues is pressureless and is effected by a stream of water flowing through the separating chamber into the lock vessel. Separating chamber and lock vessel remain filled with water at all times.
Abstract:
An improvement in a process for periodically sluicing residues which are produced when gasifying ash-containing fuels with oxygen or an oxygen-containing composition under a pressure of 10 to 200 bars wherein ash is granulated in a water bath connected to a gasification chamber, suspended in water and passed into a non-pressurized collecting vessel provided with a conveyor is described. The improvement comprises:a. discharging the residue from said water bath which is maintained in fluid communication with said gasification chamber via a lock vessel, said lock vessel being connected to a surge tank which contains water so that the lock vessel remains constantly filled with water;b. equalizing the pressure between said lock vessel and said gasification chamber including said water bath by opening a connection to a process water feed line for said water bath and admitting water therein;c. depressurizing said lock vessel and removing liberated gases (previously dissolved in the water) and steam therefrom by opening a connection between said lock vessel and said surge tank;d. discharging suspended and granulated residues from said lock vessel into a collecting vessel by flushing said lock vessel with an adjustable amount of water flowing from said surge tank; ande. adjusting the water level in the collection vessel during the time the lock vessel is open so that the water level is sufficiently high such that no gas penetrates the lock vessel from the outside and the water level in the lock vessel does not sink.
Abstract:
An improvement in a process for periodically sluicing residues which are produced when gasifying ash-containing fuels with oxygen or an oxygen-containing composition under a pressure of 10 to 200 bars wherein ash is granulated in a water bath connected to a gasification chamber, suspended in water and passed into a non-pressurized collecting vessel provided with a conveyor is described. The improvement comprises:a. discharging the residue from said water bath which is maintained in fluid communication with said gasification chamber via a lock vessel, said lock vessel being connected to a surge tank which contains water so that the lock vessel remains constantly filled with water;b. equalizing the pressure between said lock vessel and said gasification chamber including said water bath by opening a connection to a process water feed line for said water bath and admitting water therein;c. depressurizing said lock vessel and removing liberated gases (previously dissolved in the water) and steam therefrom by opening a connection between said lock vessel and said surge tank;d. discharging suspended and granulated residues from said lock vessel into a collecting vessel by flushing said lock vessel with an adjustable amount of water flowing from said surge tank; ande. adjusting the water level in the collection vessel during the time the lock vessel is open so that the water level is sufficiently high such that no gas penetrates the lock vessel from the outside and the water level in the lock vessel does not sink.
Abstract:
An improvement in the process for the gasification of a solid fuel wherein the solid fuel is at least partially oxidized at a temperature above the melting point of ash of the solid fuel and at a pressure of 10-200 bar where the resultant synthesis gas is thereafter cooled in the presence of combustion residues of the solid fuel, and the combustion residues are thereafter discharged directly, the improvement residing in carrying out the gasification in a gasification zone disposed vertically over and in fluid communication with a radiation zone comprising cooling surfaces, the radiation zone have disposed at the bottom thereof and in fluid communication with the radiation zone a water containing bath. The radiation zone is cylindrical or conical, widens by 0 to 15 degrees towards the bottom, is made in a finned wall construction with a relation of height to diameter of .ltoreq.6:1 and comprises cooling surfaces. A jet centrally placed in the radiation zone for introducing synthesis gas and combustion residues from the gasification zone into the radiation zone at a flow rate of 1-30 m/sec. The effluents from the gasification zone are directed into the radiation zone and into contact with the water containing bath, whereby combustion residues are retained by the bath. Synthesis gas can thereafter be removed from the radiation zone and further cooled in a convection chamber. Also disclosed is an apparatus for carrying out the process.
Abstract:
A plant for the gasification of fossil fuels which includes a reactor container and a further plant component attachable to the reactor container. The reactor container has a discharge opening and includes a connection part extending outwardly from the discharge opening. A fireproof lining, which determines the inner cross-sectional area of the container, is provided within the container. An intermediate ring is interposed between the connecting part of the reactor container and the further plant component for attaching the connecting part to the further plant component. This intermediate ring is provided with a fireproof lining having an area of reduced inner cross-section which is less than the inner cross-sectional area of the fireproof lining of the reactor container, the area of reduced cross-section being the smallest cross-sectional area in the connection between the reactor container and the further plant component.