摘要:
The present invention relates to methods for screening of cellular responses of cellular components comprising: (a) providing cellular components on the surface of a substrate, said substrate having immobilized thereon an array of detector molecules; (b) delivering test compounds to positions on the substrate corresponding to the arrayed detector molecules on the surface of said solid substrate; (c) incubating said test compounds with said cellular components on the surface of the solid support, under conditions allowing the induction of cellular responses; (d) assaying said cellular responses; and, identifying and characterizing the cellular responses induced by said test compounds. The present invention further relates to the uses of said methods as well as microarrays and kits for carrying out said methods.
摘要:
A device for performing an assay comprising a substrate having through-going channels that open out onto a surface for sample application, the channels being provided in at least one cross-sectional area with a first binding substance capable of binding a particular analyte, the substrate being an electrochemically manufactured metal oxide membrane and containing the first binding substance within the through-going channels.
摘要:
A device for holding a substrate comprises upper and lower plates adapted to receive the substrate sandwiched in the interface between the plates. Each plate has at least one opening with a projecting rim surrounding the opening and directed away from the interface. The openings in the upper and lower plates are preferably at least partially aligned in the sandwiched position of the plates. Each opening in the lower plate can be provided with a shielding member partially shielding the opening of the lower plate.
摘要:
The present invention relates to a device for performing an assay, which device comprises a substrate having oriented through-going channels, said channels opening out on a surface for sample application, the channels in at least one area of the surface for sample application being provided with a first binding substance capable of binding to an analyte. The object of the present invention is to provide a substrate having both a high channel density and a high porosity, allowing high density arrays comprising different first binding substances to be applied to the surface for sample application. More in particular, the object of the present invention is to provide a device comprising a relatively cheap substrate that does not require the use of any typical microfabrication technology and, that offers an improved control over the liquid distribution over the surface of the substrate. The above objects are achieved with a device as mentioned above wherein the porous substrate is an electrochemically manufactured metal oxide membrane.
摘要:
A method of detecting redispersion of particles into a solution using for example FTIR. The method including providing a sensor surface with dry particles; illuminating the sensor surface with light along a first optical path and detecting the light reflected by the sensor surface; providing a liquid to a volume in contact with the sensor surface; and detecting the reflected light while the dry particles redisperse into the liquid. The angle between the first optical path and the sensor surface fulfils the condition of total internal reflection. Further, an FTIR cartridge may be provided for use in said method. The cartridge including a sensor surface accessible for FTIR detection including at least one binding area wherein label particles are situated.
摘要:
Disclosed is a device useful for performing an assay comprising a substrate having interconnecting channels that open out onto a surface for sample application, the channels being provided in at least one cross-sectional area with a first binding substance capable of binding a particular analyte, the substrate being an electrochemically manufactured metal oxide membrane and containing the first binding substance within the through-going channels. Similar devices are also useful for chemical synthesis. Assay and chemical synthesis methods are also disclosed, as are kits for performing the assays or chemical syntheses.
摘要:
The present invention concerns a method for the detection of an analyte in a droplet of fluid comprising the steps of providing a solid phase with a hydrophobic surface comprising at least one capture zone on which at least one binding agent with affinity for the analyte is immobilized, applying said droplet to the surface of said solid phase, applying a force that makes the droplet travel along the surface of said solid phase along a predetermined path thereby allowing the droplet to repeatedly contact said binding agent on the capture zone, applying conditions wherein said analyte is allowed to bind to said binding agent and detecting a complex of analyte and binding reagent at the position of the capture zone. The effect of a moving droplet is that the reactants in the droplet are well mixed which eliminates the risk of diffusion limitation. Such advantageous mixing is not obtained with conventional assays in which the surface is continuously exposed to the liquid. The use of a droplet eliminates the need for external mixing and also circumvents the need to dilute the sample in order to obtain sufficient volume to wet a large surface area.
摘要:
The present invention relates to a device for performing an assay, which device comprises a substrate having oriented through-going channels, said channels opening out on a surface for sample application, the channels in at least one area of the surface for sample application being provided with a first binding substance capable of binding to an analyte. The object of the present invention is to provide a substrate having both a high channel density and a high porosity, allowing high density arrays comprising different first binding substances to be applied to the surface for sample application. More in particular, the object of the present invention is to provide a device comprising a relatively cheap substrate that does not require the use of any typical microfabrication technology and, that offers an improved control over the liquid distribution over the surface of the substrate. The above objects are achieved with a device as mentioned above wherein the porous substrate is an electrochemically manufactured metal oxide membrane.