Abstract:
An image sensor having a wave guide includes a semiconductor substrate formed with a photodiode and a peripheral circuit region; an anti-reflective layer formed on the semiconductor substrate; an insulation layer formed on the anti-reflective layer; a wiring layer formed on the insulation layer and connected to the semiconductor substrate; at least one interlayer dielectric stacked on the wiring layer; and a wave guide connected to the insulation layer by passing through the interlayer dielectric and the wiring layer which are formed over the photodiode.
Abstract:
A back side illumination image sensor reduced in chip size has a capacitor disposed in a vertical upper portion of a pixel region in the back side illumination image sensor in which light is illuminated from a back side of a subscriber, thereby reducing a chip size, and a method for manufacturing the back side illumination image sensor. The capacitor of the back side illumination image sensor reduced in chip size is formed in the vertical upper portion of the pixel region, not in the outside of a pixel region, so that the outside area of the pixel region for forming the capacitor is not required, thereby reducing a chip size.
Abstract:
An image sensor having a wave guide includes a semiconductor substrate formed with a photodiode and a peripheral circuit region; an anti-reflective layer formed on the semiconductor substrate; an insulation layer formed on the anti-reflective layer; a wiring layer formed on the insulation layer and connected to the semiconductor substrate; at least one interlayer dielectric stacked on the wiring layer; and a wave guide connected to the insulation layer by passing through the interlayer dielectric and the wiring layer which are formed over the photodiode.
Abstract:
A CMOS image sensor and a method for manufacturing the same are provided. The CMOS image sensor may be capable of improved thickness uniformity form microlenses formed at a reduced distance from the photodiodes. The CMOS image sensor can include: a semiconductor substrate on which a pixel array is formed, the pixel array including photodiodes formed on the semiconductor substrate to different depths for sensing red, green, and blue signals, respectively; an interlayer dielectric formed on the semiconductor substrate and having a trench at an upper portion of the pixel array; an insulating layer sidewall formed at a side of the trench; and a plurality of microlenses formed on the interlayer dielectric in the trench at predetermined intervals.
Abstract:
An image sensor having a wave guide includes a semiconductor substrate formed with a photodiode and a peripheral circuit region; an anti-reflective layer formed on the semiconductor substrate; an insulation layer formed on the anti-reflective layer; a wiring layer formed on the insulation layer and connected to the semiconductor substrate; at least one interlayer dielectric stacked on the wiring layer; and a wave guide connected to the insulation layer by passing through the interlayer dielectric and the wiring layer which are formed over the photodiode.
Abstract:
A back side illumination image sensor reduced in chip size has a capacitor disposed in a vertical upper portion of a pixel region in the back side illumination image sensor in which light is illuminated from a back side of a subscriber, thereby reducing a chip size, and a method for manufacturing the back side illumination image sensor. The capacitor of the back side illumination image sensor reduced in chip size is formed in the vertical upper portion of the pixel region, not in the outside of a pixel region, so that the outside area of the pixel region for forming the capacitor is not required, thereby reducing a chip size.
Abstract:
A method for forming a pad in a wafer with a three-dimensional stacking structure is disclosed. The method includes bonding a device wafer that includes an Si substrate and a handling wafer, thinning a back side of the Si substrate, depositing an anti-reflective layer on the thinned back side of the Si substrate, depositing a back side dielectric layer on the anti-reflective layer, forming vias that pass through the anti-reflective layer and the back side dielectric layer and contact back sides of super contacts which are formed on the Si substrate, and forming a pad on the back side dielectric layer such that the pad is electrically connected to the vias.
Abstract:
A CMOS image sensor and a method for manufacturing the same are provided. The CMOS image sensor may be capable of improved thickness uniformity form microlenses formed at a reduced distance from the photodiodes. The CMOS image sensor can include: a semiconductor substrate on which a pixel array is formed, the pixel array including photodiodes formed on the semiconductor substrate to different depths for sensing red, green, and blue signals, respectively; an interlayer dielectric formed on the semiconductor substrate and having a trench at an upper portion of the pixel array; an insulating layer sidewall formed at a side of the trench; and a plurality of microlenses formed on the interlayer dielectric in the trench at predetermined intervals.
Abstract:
An exemplary method of forming a shallow trench isolation layer in a semiconductor device according to an embodiment of the present invention includes depositing a silicon nitride layer as a hard mask layer on a silicon substrate, forming a first moat pattern in the silicon nitride layer by a photolithography process, patterning the silicon nitride layer by a dry etching process using the first moat pattern as an etching mask, forming a shallow trench by dry-etching the substrate that is exposed by the patterned silicon nitride layer, removing the first moat pattern after forming the shallow trench, removing the patterned silicon nitride layer, filling the shallow trench with a gap-fill insulation layer, forming a second moat pattern, removing the gap-fill insulation layer by a dry etching process using the second moat pattern as an etching mask, and removing the second moat pattern.
Abstract:
A back side illumination image sensor reduced in chip size has a capacitor disposed in a vertical upper portion of a pixel region in the back side illumination image sensor in which light is illuminated from a back side of a subscriber, thereby reducing a chip size, and a method for manufacturing the back side illumination image sensor. The capacitor of the back side illumination image sensor reduced in chip size is formed in the vertical upper portion of the pixel region, not in the outside of a pixel region, so that the outside area of the pixel region for forming the capacitor is not required, thereby reducing a chip size.