Abstract:
An embodiment includes an impedance calibration circuit having a calibrator configured to compare voltage levels at an external node and an internal node of the impedance calibration circuit and to generate an output based on the comparison. The calibrator further includes respective filters coupled between the external node and a first input of the comparator, and between the internal node and a second input of the comparator. The filters are configured for symmetric noise injection into the comparator from a chip ground line to which a programmable resistor at the internal node is coupled.
Abstract:
An embodiment of an impedance calibration circuit and method, a device including an impedance calibration circuit, and a transmission link system.
Abstract:
A memory cell is formed by storage latch having a true node and a complement node. The cell includes a write port operable in response to a write signal on a write word line to write data from write bit lines into the latch, and a separate read port operable in response to a read signal on a read word line to read data from the latch to a read bit line. The circuitry of the memory cell is configured to address voltage bounce at the complement node during reading of the memory (where the voltage bounce arises from a simultaneous write to another memory cell in a same row).
Abstract:
An embodiment of a pre-emphasis circuit, an embodiment of a method for pre-emphasizing complementary single-ended signals, an embodiment of a transmitter, and an embodiment of a communication system.
Abstract:
An embodiment of a pre-emphasis circuit, an embodiment of a method for pre-emphasizing complementary single-ended signals, an embodiment of a transmitter, and an embodiment of a communication system.
Abstract:
A system and method for utilizing multiple configurable lanes for clock and data transfer in source synchronous systems that may utilize a clock signal from another source for interpreting data received from the source. In an embodiment, a system may include a transmitter configured to transmit at least one clock signal and at least one data signal to a receiver device. The receiver device may have at least one clock lane and at least one data lane for receiving signals from the transmitter device. The clock lane(s) and data lane(s) can be arranged in any order as per requirement of system design. In the receiver, after manufacture, each data lane may be configured to be clocked by any clock lane.
Abstract:
A system and method for utilizing multiple configurable lanes for clock and data transfer in source synchronous systems that may utilize a clock signal from another source for interpreting data received from the source. In an embodiment, a system may include a transmitter configured to transmit at least one clock signal and at least one data signal to a receiver device. The receiver device may have at least one clock lane and at least one data lane for receiving signals from the transmitter device. The clock lane(s) and data lane(s) can be arranged in any order as per requirement of system design. In the receiver, after manufacture, each data lane may be configured to be clocked by any clock lane.
Abstract:
An improved timing skew measurement system includes a selector receiving a plurality of input signals whose relative skew is to be measured, a selection controller connected to the select inputs of the selector for selecting one of the input signals and a sequential logic element having a first input connected to the output of the selector. The system further includes a controllable clock generator capable of providing an adjustable clock edge position connected to a second input of the sequential logic element, the first and second inputs being associated by at least one defined timing relationship for correct operation of the sequential logic element, and an output analyzer having one input connected to the output of the sequential logic element, a first output connected to the input of the selection controller and a second output connected to the control input of the controllable clock generator.
Abstract:
A memory cell is formed by storage latch having a true node and a complement node. The cell includes a write port operable in response to a write signal on a write word line to write data from write bit lines into the latch, and a separate read port operable in response to a read signal on a read word line to read data from the latch to a read bit line. The circuitry of the memory cell is configured to address voltage bounce at the complement node during reading of the memory (where the voltage bounce arises from a simultaneous write to another memory cell in a same row).
Abstract:
An improved timing skew measurement system includes a selector receiving a plurality of input signals whose relative skew is to be measured, a selection controller connected to the select inputs of the selector for selecting one of the input signals and a sequential logic element having a first input connected to the output of the selector. The system further includes a controllable clock generator capable of providing an adjustable clock edge position connected to a second input of the sequential logic element, the first and second inputs being associated by at least one defined timing relationship for correct operation of the sequential logic element, and an output analyzer having one input connected to the output of the sequential logic element, a first output connected to the input of the selection controller and a second output connected to the control input of the controllable clock generator.