摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
The invention provides a method for determining vibration-related information by projecting an aerial image at an image position in a projection plane, mapping an intensity of the aerial image into an image map, the image map arranged for comprising values of coordinates of sampling locations and of the intensity sampled at each sampling location, and measuring intensity of the aerial image received through a slot pattern. The method further includes determining from the image map a detection position of a slope portion of the image map, at the detection position of the slope portion, measuring of a temporal intensity of the aerial image and measuring of relative positions of the slot pattern and the image position, the relative positions of the slot being measured as position-related data of the slot pattern and determining from the temporal intensity of the aerial image vibration-related information for said aerial image.
摘要:
An arrangement for and a method of automatically selecting substrate alignment marks on a substrate in a lithographic apparatus or overlay metrology targets in an overlay metrology apparatus. The apparatus has a processor and a memory connected to the processor. The memory stores locations of one or more sets of substrate alignment marks or overlay metrology targets available for selection and selection rules to select suitable substrate alignment marks or overlay metrology targets from this at least one set. The selection rules are based on experimental or theoretical knowledge about which substrate alignment mark or overlay metrology targets locations are optimal in dependence on one or more selection criteria.