Abstract:
A method including patterning a thickness dimension of an interconnect material into a thickness dimension for a wiring line with one or more vias extending from the wiring line and introducing a dielectric material on the interconnect material. A method including depositing and patterning an interconnect material into a wiring line and one or more vias; and introducing a dielectric material on the interconnect material such that the one or more vias are exposed through the dielectric material. An apparatus including a first interconnect layer in a first plane and a second interconnect in a second plane on a substrate; and a dielectric layer separating the first and second interconnect layers, wherein the first interconnect layer comprises a monolith including a wiring line and at least one via, the at least one via extending from the wiring line to a wiring line of the second interconnect layer.
Abstract:
Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.
Abstract:
Methods and associated structures of forming a microelectronic structure are described. Those methods may comprise forming a conductive material in an interconnect opening within an interlayer dielectric material that is disposed on a substrate, forming a low density dielectric material on a surface of the dielectric layer and on a surface of the conductive material, and forming a high density dielectric barrier layer on the low density dielectric layer.
Abstract:
Conformal hermetic dielectric films suitable as dielectric diffusion barriers over 3D topography. In embodiments, the dielectric diffusion barrier includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with a conformality and density greater than can be achieved in a conventional silicon dioxide-based film deposited by a PECVD process for a thinner contiguous hermetic diffusion barrier. In further embodiments, the diffusion barrier is a multi-layered film including a high-k dielectric layer and a low-k or intermediate-k dielectric layer (e.g., a bi-layer) to reduce the dielectric constant of the diffusion barrier. In other embodiments a silicate of a high-k dielectric layer (e.g., a metal silicate) is formed to lower the k-value of the diffusion barrier by adjusting the silicon content of the silicate while maintaining high film conformality and density.
Abstract:
A metallization layer including a fully clad interconnect and a method of forming a fully clad interconnect. An opening is formed in a dielectric layer, wherein the dielectric layer has a surface and the opening includes walls and a bottom. A diffusion barrier layer and an adhesion layer are deposited on the dielectric layer. An interconnect material is deposited on the dielectric layer and reflowed into the opening forming an interconnect. An adhesion capping layer and diffusion barrier capping layer are deposited over the interconnect. The interconnect is surrounded by the adhesion layer and the adhesion capping layer and the adhesion layer and the adhesion capping layer are surrounded by the diffusion barrier layer and the diffusion capping layer.
Abstract:
Methods and associated structures of forming a microelectronic structure are described. Those methods may comprise forming a conductive material in an interconnect opening within an interlayer dielectric material that is disposed on a substrate, forming a low density dielectric material on a surface of the dielectric layer and on a surface of the conductive material, and forming a high density dielectric barrier layer on the low density dielectric layer.
Abstract:
Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.
Abstract:
A dielectric layer and a method of forming thereof. An opening defined in a dielectric layer and a wire deposited within the opening, wherein the wire includes a core material surrounded by a jacket material, wherein the jacket material exhibits a first resistivity ρ1 and the core material exhibits a second resistivity ρ2 and ρ2 is less than ρ1.
Abstract:
A method including patterning a thickness dimension of an interconnect material into a thickness dimension for a wiring line with one or more vias extending from the wiring line and introducing a dielectric material on the interconnect material. A method including depositing and patterning an interconnect material into a wiring line and one or more vias; and introducing a dielectric material on the interconnect material such that the one or more vias are exposed through the dielectric material. An apparatus including a first interconnect layer in a first plane and a second interconnect in a second plane on a substrate; and a dielectric layer separating the first and second interconnect layers, wherein the first interconnect layer comprises a monolith including a wiring line and at least one via, the at least one via extending from the wiring line to a wiring line of the second interconnect layer.
Abstract:
A method may comprise assembling a first dielectric ensemble that comprises a first dielectric layer exhibiting a first porosity, a second dielectric layer exhibiting a second porosity and a third dielectric layer exhibiting a third porosity, and fabricating a first metal line in the dielectric ensemble. A chemical may be applied on the third layer to pass through and dissolve a portion of the second layer. The third layer acts to prevent a via that is partially landed on the dielectric from exposing the air gap underneath.