Abstract:
The disclosure describes method of synthesis of substituted benzazepine derivatives. Preferred methods according to the disclosure allow for large-scale preparation of benzazepine compounds having low levels of metal impurities. In some embodiments, preferred methods according to the disclosure also allow for the preparation of benzazepine derivatives without the use of chromatographic purification methods and in better yield than previously used methods for preparing such compounds. The methods disclosed herein find utility in synthetic organic chemistry as well as medicinal chemistry.
Abstract:
The present invention is directed generally to stable formulations of a TLR agonist preferably a TLR7 or a TLR8 agonist, for use in the treatment of cancer, preferably solid tumors and lymphomas. Specifically, the present invention is directed to stable formulations of up to 50 mg/ml of a TLR agonist which comprise a cyclodextrin.
Abstract:
Benzobicyclooctane compounds, their use in inhibiting cellular events involving TNF-α and IL-8, and in the treatment of inflammation events in general; a combinatorial library of diverse bicyclooctanes and process for their synthesis as a library and as individual compounds.
Abstract:
Novel substituted pyrazolidinones have been found to exhibit significant binding to cholecystokinin (CCK) receptors and gastrin receptors in the brain and/or peripheral sites such as the pancreas, stomach, and ileum. The pyrazolidinones are CCK and gastrin receptor antagonists and find therapeutic application in the treatment of gastrointestinal disorders, central nervous system disorders and for appetite regulation in warm-blood vertebrates. Pharmaceutical formulations for such indications are described.
Abstract:
This invention provides certain N-phenyl-N'-substituted phenylsulfonylureas compounds, formulations, and a method for treating susceptible neoplasms in mammals using the sulfonylurea compounds.
Abstract:
The present invention is directed generally to stable formulations of a TLR agonist preferably a TLR7 or a TLR8 agonist, for use in the treatment of cancer, preferably solid tumors and lymphomas. Specifically, the present invention is directed to stable formulations of up to 50 mg/ml of a TLR agonist which comprise a cyclodextrin.
Abstract:
A method and system for correlating characteristics (e.g., type of nucleotide) of biomolecules (e.g., DNA) to molecular tags with unique molecular weights that are associated with the biomolecule. In one embodiment. the molecular tags are applied to primers used when synthesizing the biomolecule. The system initially receives a mapping of each characteristic of the biomolecules to the corresponding molecular weight of the molecular tag. The system also receives an indication of the molecular weights detected when analyzing the biomolecules to which the molecular tags have been associated. For each molecular weight detected, the system determines based on the received mapping the characteristic corresponding to the detected molecular weight. The system then indicates that the analyzed biomolecule has the determined characteristic.
Abstract:
Novel substituted pyrazolidinones have been found to exhibit significant binding to cholecystokinin (CCK) receptors and gastrin receptors in the brain and/or peripheral sites such as the pancreas, stomach, and ileum. The pyrazolidinones are CCK and gastrin receptor antagonists and find therapeutic application in the treatment of gastrointestinal disorders, central nervous system disorders and for appetite regulation in warm-blood vertebrates. Pharmaceutical formulations for such indications are described.
Abstract:
A method of inhibiting a physiological disorder associated with an excess of neuropeptide Y or its symptoms comprising administering to a human in need thereof an effective amount of a compound having the formula ##STR1## wherein R.sup.1 and R.sup.3 are independently hydrogen, --CH.sub.3, ##STR2## wherein Ar is optionally substituted phenyl; R.sup.2 is selected from the group consisting of pyrrolidine, hexamethyleneamino, and piperidino; or a pharmaceutically acceptable salt of solvate thereof.
Abstract:
A method of inhibiting a physiological condition associated with an excess of bradykinin comprising administering to a human in need thereof an effective amount of a compound having the formula ##STR1## wherein R.sup.1 and R.sup.3 are independently hydrogen, --CH.sub.3, ##STR2## wherein Ar is optionally substituted phenyl; R.sup.2 is selected from the group consisting of pyrrolidine, hexamethyleneamino, and piperidino; or a pharmaceutically acceptable salt of solvate thereof.