Abstract:
A motor driving circuit is described for three-phase brushless DC motors, which have a three-phase-coil and first and second Hall sensors to detect the magnetic field of a rotor. The motor driving circuit includes first and second comparators, comparing a first and second pair of Hall signals from the Hall sensors, and outputting a first and second Hall signals. An adder unit receives the first and second pair of Hall signals to output a third pair of Hall signals to a third comparator, which outputs a third Hall signal. A motor driver is controlled by the first, second, and third Hall signals of the first, second and third comparators to change directions of currents flowing through phases of the three-phase coil accordingly to rotate the rotor of the motor. The first and second Hall signals can be amplified to match the level of the third Hall signal, or vice versa.
Abstract:
Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.
Abstract:
Methods for forming interconnect structures are provided herein. In some embodiments, a method for forming an interconnect on a substrate may include depositing a material atop an upper surface of the substrate and atop one or more surfaces of a feature disposed in the substrate by a first deposition process that deposits the material at a faster rate on the upper surface than on a bottom surface of the feature; depositing the material atop the upper surface of the substrate and atop one or more surfaces of the feature by a second deposition process that deposits the material at a greater rate on the bottom surface of the feature than on the upper surface of the substrate; and heating the deposited material to draw the deposited material towards the bottom surface of the feature to at least partially fill the feature with the deposited material.
Abstract:
Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
Abstract:
Methods for forming interconnect structures are provided herein. In some embodiments, a method for forming an interconnect on a substrate may include depositing a material atop an upper surface of the substrate and atop one or more surfaces of a feature disposed in the substrate by a first deposition process that deposits the material at a faster rate on the upper surface than on a bottom surface of the feature; depositing the material atop the upper surface of the substrate and atop one or more surfaces of the feature by a second deposition process that deposits the material at a greater rate on the bottom surface of the feature than on the upper surface of the substrate; and heating the deposited material to draw the deposited material towards the bottom surface of the feature to at least partially fill the feature with the deposited material.
Abstract:
Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
Abstract:
Apparatus for improving temperature uniformity across a substrate are provided herein. In some embodiments, a deposition ring for use in a substrate processing system to process a substrate may include an annular body having a first surface, an opposing second surface, and a central opening passing through the first and second surfaces, wherein the second surface is configured to be disposed over a substrate support having a support surface to support a substrate having a given width, and wherein the opening is sized to expose a predominant portion of the support surface; and wherein the first surface includes at least one reflective portion configured to reflect heat energy toward a central axis of the annular body, wherein the at least one reflective portion has a surface area that is about 5 to about 50 percent of a total surface area of the first surface.
Abstract:
A motor driving circuit is described for three-phase brushless DC motors, which have a three-phase-coil and first and second Hall sensors to detect the magnetic field of a rotor. The motor driving circuit includes first and second comparators, comparing a first and second pair of Hall signals from the Hall sensors, and outputting a first and second Hall signals. An adder unit receives the first and second pair of Hall signals to output a third pair of Hall signals to a third comparator, which outputs a third Hall signal. A motor driver is controlled by the first, second, and third Hall signals of the first, second and third comparators to change directions of currents flowing through phases of the three-phase coil accordingly to rotate the rotor of the motor. The first and second Hall signals can be amplified to match the level of the third Hall signal, or vice versa.